a2 United States Patent

Galchev

US009432240B2

US 9,432,240 B2
*Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54)
(71)
(72)
(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

FLEXIBLE FAILOVER CONFIGURATION

Applicant: SAP SE, Walldorf (DE)

Inventor: Galin Galchev, Sofia (BG)
Assignee: SAP SE, Walldorf (DE)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 198 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/051,940

Filed: Oct. 11, 2013

Prior Publication Data
US 2014/0040487 Al Feb. 6, 2014
Related U.S. Application Data

Continuation of application No. 11/117,851, filed on
Apr. 29, 2005, now Pat. No. 8,589,562.

Int. CL.

GO6F 15/16 (2006.01)
HO4L 29/06 (2006.01)
GO6F 11/14 (2006.01)
HO4L 29/08 (2006.01)
GO6F 11/20 (2006.01)
U.S. CL

CPC ... HO4L 29/06319 (2013.01); GOG6F 11/1438
(2013.01); GOGF 11/2043 (2013.01); GO6F
11/2046 (2013.01); HO4L 67/14 (2013.01);

GO6F 11/1471 (2013.01); GO6F 11/2035
(2013.01)

Field of Classification Search

CPC HO4L 29/06319; HO4L 67/14; HO4L 67/142

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,274,804 A 12/1993 Jackson et al.
5,311,318 A 5/1994 Dobrovolny
5,331,318 A 7/1994 Montgomery
5,553,242 A 9/1996 Russell et al.
(Continued)
FOREIGN PATENT DOCUMENTS
EP 0459931 A2 12/1991
EP 1027796 A2 8/2000
(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 11/118,019, filed Apr. 29, 2005, System and method
for monitoring threads in a clustered server architecture.

(Continued)

Primary Examiner — Patrice Winder

Assistant Examiner — Nam Tran

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

A method is described that involves offering a user different
persistent scope choices including: a) internal to a comput-
ing system that the deployment descriptor is to be sent to;
and, b) external to the computing system that the deploy-
ment descriptor is to be sent to. The method also involves
offering a user different persistence frequency choices
including: a) persisting per request; and, b) persisting per
session state information attribute change. The method also
involves generating a deployment descriptor that reflects the
user’s choice of the persistence scope and persistence fre-
quency.

20 Claims, 18 Drawing Sheets

DEFINE APPLICATION'S PERSISTENCE 1804
BTRATEGY AND CREATE DEPLOYMENT ad
READ DEPLOYMENT DESCRIFTOR
AND GREATE BESSION DOMAIN 1802
FOR THE APPLICATION Nt

INSTANCE
WIDE

CREATE INTERNAL

FILE SYSTEW DATABASE
PERSISTENT PERSISTENT

E STORAGE
INTERFACE INTERFACE

))

1806 1897

“ HANDLED DATARASE
BY SHARED PERSISTENT
MEMORY * STORAGE
i FACE
1808 1808

US 9,432,240 B2

Page 2
(56) References Cited 7,149,741 B2 12/2006 Burkey et al.
7,165,239 B2 1/2007 Hejlsberg et al.
U.S. PATENT DOCUMENTS 7,165,241 B2 1/2007 Manda et al.
7,167,917 B2 1/2007 Creamer et al.
5,566,302 A 10/1996 Khalidi et al. 7,174,363 Bl 2/2007 Goldstein et al.
5,590,328 A 12/1996 Seno et al. 7,177,823 B2 2/2007 Lam et al.
5,617,570 A 4/1997 Russell et al. 7,184,922 B2 2/2007 Ousley et al.
5,692,193 A 11/1997 Jagannathan et al. 7,185,096 B2 2/2007 Kalyanavarathan et al.
5,745,778 A 4/1998 Alfieri 7,191,170 B2 3/2007 Ganguly et al.
5.805.790 A 0/1998 Nota et al. 7,197,568 B2 3/2007 Bourne et al.
5:809:527 A 9/1998 Cooper et al. 7,203,944 Bl 4/2007 van Rietschote et al.
5,835,724 A 11/1998 Smith 7,222,165 Bl 5/2007 Ellis et al.
5,844,781 A 12/1998 Schlotterer 7,231,435 B2 62007 Ohta
5,870,742 A 2/1999 Chang et al. 7,254,634 Bl 8/2007 Davis et al.
5,884,316 A 3/1999 Bernstein et al. 7,266,616 Bl 9/2007 Munshi et al.
5,887,141 A 3/1999 Trugman 7,266,816 Bl 9/2007 Sharma et al. 717/170
5,933,601 A 8/1999 Fanshier et al. 7,277,935 B2 1072007 Sato
5,961,584 A 10/1999 Wolf 7,296,267 B2 11/2007 Cota-Robles et al.
5,966,127 A 10/1999 Yajima 7,302,423 B2 112007 De Bellis
5,974,443 A 10/1999 Jeske 7,302,609 B2 11/2007 Matena et al.
5,974,566 A 10/1999 Ault et al. 7,305,495 B2 12/2007 Carter
6,047,295 A 4/2000 Endicott et al. 7,308,501 B2 12/2007 DeLima et al.
6,065,006 A 5/2000 Decarmo 7,373,661 B2 5/2008 Smith et al.
6,098,093 A 8/2000 Bayeh et al. 7,406,692 B2 7/2008 Halpern et al.
6,115,712 A 9/2000 Islam et al. 7,409,709 B2 8/2008 Smith et al.
6,115,721 A 9/2000 Nagy 7,412,532 B2 8/2008 Gondhalekar et al.
6,125,400 A 9/2000 Cohen et al. 7/418,560 B2 82008 Wintergerst
6,144,991 A 11/2000 England 7421,495 B2 9/2008 Yang et al.
6,167,423 A 12/2000 Chopra et al. 7.444,644 B1 10/2008 Slaughter et al.
6,167,449 A 12/2000 Arnold et al. 7,467,162 B2 12/2008 Rosenbloom et al.
6,216,152 Bl 4/2001 Wong et al. 7,512,737 B2 3/2009 Petev
6,336,170 Bl 1/2002 Dean et al. 7,532,571 Bl 5/2009 Price et al.
6,338,089 Bl 1/2002 Quinlan 7,539,821 B2 5/2009 Petev et al.
6.339.782 Bl 1/2002 Gerard et al. 7,543,051 B2 6/2009 Greifeneder et al.
6:356:529 Bl 3/2002 Zarom 7,543,289 B2 6/2009 Cai et al.
6,385,643 Bl 5/2002 Jacobs et al. 7,552,284 B2 6/2009 Petey et al.
6,385,653 Bl 5/2002 Sitaraman et al. 7,590,727 BL - 9/2009 Barnes
6,389,460 Bl 5/2002 Stewart et al. 7,694,065 B2 4/2010 Petev et al.
6,415,364 Bl 7/2002 Bauman et al. 7,716,274 Bl 52010 Kumar ..o 709/219
6,446,088 Bl 9/2002 Vaduvur et al. 7,725,505 B2 52010 Bonev et al.
6,502,148 Bl 12/2002 Krum 7,761,435 B2 7/2010 Stanev et al.
6.523.027 Bl 2/2003 Underwood 7,853,698 B2 12/2010 Stanev et al.
6:539:445 Bl 3/2003 Krum 8,015,561 B2 9/2011 Stanev
6,601,112 Bl 7/2003 O’Rourke et al. 8,024,566 B2 9/2011 Stanev
6,615,253 Bl 9/2003 Bowman-Amuah 8,112,747 B2 2/2012 Haeberle et al.
6,640,244 Bl 10/2003 Bowman-Amuah 8,204,931 B2 6/2012 Stanev et al.
6,654,765 B2 11/2003 Wong et al. 8,281,014 B2 10/2012 Stanev et al.
6,665,674 Bl 12/2003 Buchanan et al. 8,589,562 B2 11/2013 Galchev
6,675,214 B2 1/2004 Stewart et al. 8,762,547 B2 6/2014 Stanev
6,687,702 B2 2/2004 Vaitheeswaran et al. 8,799,359 B2 82014 Stanev et al.
6,691,113 B1* 2/2004 Harrison et al. 707/E17.115 2001/0029520 Al 10/2001 Miyazaki
6,721,777 Bl 4/2004 Sharma 2001/0054004 Al 12/2001 Powers
6,728,748 Bl 4/2004 Mangipudi et al. 2002/0046304 Al 4/2002 Fabri et al.
6.732.237 Bl 5/2004 Jacobs et al. 2002/0078060 Al 6/2002 Garst et al.
6,751,797 Bl 6/2004 Desgranges et al. 2002/0078192 Al 6/2002 Kopsell et al.
6,757,708 Bl 6/2004 Craig et al. 2002/0083118 Al 6/2002 Sim
6.760.911 Bl 7/2004 Ye 2002/0087700 Al 7/2002 Chae
6763440 Bl 7/2004 Traversat <t al. 2002/0099691 Al 7/2002 Lore et al.
6,766,419 Bl 7/2004 Zahir et al. 2002/0116505 Al 8/2002 Higgins et al.
6,772,409 Bl 8/2004 Chawla et al. 2002/0133805 Al 9/2002 Pugh et al.
6,799:202 Bl 9/2004 Hankinson et al. 2002/0143958 Al* 10/2002 Montero et al. 709/228
6,842,770 Bl 1/2005 Serlet et al. 2002/0152429 Al 10/2002 Bergsten et al.
6,854,115 Bl 2/2005 Traversat et al. 2002/0156863 Al 10/2002 Peng
6.895.584 Bl 5/2005 Belkin 2002/0161957 Al 10/2002 Comeau et al.
6.934.755 Bl 8/2005 Saulpaugh et al. 2002/0165909 Al 11/2002 Martin et al.
6,938,085 B1* 82005 Belkin et al. 709/228 2002/0174097 Al 11/2002 Rusch et al.
6,941,307 B2 9/2005 Papanikolaou et al. 2002/0181307 Al 12/2002 Fifield et al.
6,950,822 Bl 9/2005 Idicula et al. 2002/0188678 Al 12/2002 Edecker et al.
6,970,925 Bl 11/2005 Springmeyer et al. 2002/0198923 Al 12/2002 Hayes, Jr.
6,996,679 B2 2/2006 Cargnoni et al. 2003/0014521 Al 1/2003 Elson et al.
7,013,329 Bl 3/2006 Paul et al. 2003/0014525 Al 1/2003 DeLima et al.
7,035,870 B2 4/2006 McGuire et al. 2003/0014552 Al 1/2003 Vaitheeswaran et al.
7,089,566 Bl 8/2006 Johnson 2003/0018707 Al 1/2003 Flocken
7,096,319 B2 8/2006 Mogi et al. 2003/0018717 Al 1/2003 Haley et al.
7,096,418 Bl 8/2006 Singhal et al. 2003/0033344 Al 2/2003 Abbott et al.
7,111,300 Bl 9/2006 Salas et al. 2003/0037148 Al 2/2003 Pedersen
7,127,472 B1 10/2006 Enokida et al. 2003/0037178 Al 2/2003 Vessey et al.
7,127,713 B2 10/2006 Davis et al. 2003/0056199 Al 3/2003 Li et al.
7,139,792 Bl 112006 Mischra et al. 2003/0065711 Al 4/2003 Acharya et al.

US 9,432,240 B2

Page 3
(56) References Cited 2006/0036448 A1 2/2006 Haynie et al.
2006/0036617 Al 2/2006 Bastawala et al.
U-S. PATENT DOCUMENTS 200010053087 A1 312006 Pantaw
avliov
2003/0074580 Al 4/2003 Knouse et al. 2006/0053112 Al 3/2006 Chitkara et al.
2003/0084248 Al 5/2003 Gaither et al. 2006/0059453 Al 3/2006 Kuck et al.
2003/0088604 Al 5/2003 Kuck et al. 2006/0069712 Al 3/2006 Anders et al.
2003/0093420 Al 5/2003 Ramme 2006/0089992 Al 4/2006 Blaho et al.
2003/0105887 Al 6/2003 Cox et al. 2006/0094351 Al 5/2006 N_()W:ik et al.
2003/0115190 Al 6/2003 Soderstrom et al. 2006/0117316 AL 62006 Cismas et al.
2003/0135503 Al 7/2003 Goldberg et al. 2006/0129512 Al 6/2006 Braun
2003/0135509 Al 7/2003 Davis et al. %882;833;3? ﬁi ggggg gralinrt Cal
2003/0154239 Al 8/2003 Davis et al. ostert et al.
2003/0167333 Al 9/2003 Kﬁjrll;reetaal. %882;8}3222; i} ggggg Igﬁliﬁn ett all~
2003/0177382 Al 9/2003 Ofek et al. ultz et al.
2003/0191795 Al 10/2003 Bernardin et al. 2006/0143217 Al 6/2006 Stanev et al.
2003/0196136 Al 10/2003 Haynes et al. 2006/0143256 Al 6/2006 Gal_cheV et al.
2003/0200526 Al 10/2003 Arcand 2006/0143328 Al 6/2006 Fleischer et al.
2003/0208563 Al 11/2003 Acree et al. 3882;8}33322 ﬁi ggggg ge:ev e: ai~
2003/0212654 Al 11/2003 Harper et al. etev et al.
2003/0229529 Al 12/2003 Mégipet al. 2006/0143389 Al 6/2006 Kilian et al.
2003/0236857 Al 12/2003 Takase et al. 2006/0143392 Al 6/2006 Petev et al.
2004/0024610 Al 2/2004 Fradkov et al. 3882;8}3333 ﬁi ggggg ge:ev Cal
2004/0024971 Al 2/2004 Bogin et al. ctev et al.
2004/0045014 Al 3/2004 Ra(%hakrishnan 2006/0143427 Al 6/2006 Marwinski et al.
2004/0049673 Al 3/2004 Song et al. 2006/0143608 Al 6/2006 Dostert et al.
2004/0054725 Al 3/2004 Moller et al. 2006/0143609 Al 6/2006 Stanev
2004/0068554 Al 4/2004 Bales et al. 2006/0143618 Al 6/2006 Fleischer et al.
2004/0073532 Al 4/2004 Hiltgen et al. 2006/0143619 Al 6/2006 Galchev et al.
2004/0078782 Al 4/2004 Clement et al. 2006/0150169 AL~ 7/2006 Cook et al.
2004/0098726 Al 5/2004 Currie et al. 2006/0150197 Al 7/2006 Werner
2004/0117441 Al 6/2004 Liu et al. 2006/0155756 A1~ 7/2006 Stanev
2004/0117486 Al 6/2004 Bourne et al. 2006/0155867 Al 7/2006 Kilian et al.
2004/0128370 Al 7/2004 Kortright 2006/0159197 Al 7/2006 Kraut et al.
2004/0133759 Al 7/2004 Sekiguchi 2006/0167980 Al 7/2006 Werner
2004/0153509 Al 82004 Alcorn et al. 2006/0168646 Al 7/2006 Werner
2004/0167980 Al 82004 Doyle et al. %882;85823‘5‘2 i} ggggg]J3uand Ll
2004/0168031 Al 82004 Haskins reeden et al.
2004/0172618 Al 9/2004 Marvin 2006/0212852 Al 9/2006 Hwang
2004/0181537 Al 9/2004 Chawla et al. 2006/0235810 Al 10/2006 Wen et al.
2004/0181782 Al 9/2004 Findeisen 2006/0236306 A1 10/2006 DeBruin et al.
2004/0186906 Al 9/2004 Torrant et al. éggg//g%ﬁﬁg ﬁi Hgggg Stanev et 3
2004/0187140 Al 9/2004 Aigner et al. anev et al.
2004/0205162 Al 10/2004 Parikh 2006/0248131 Al 11/2006 Marwinski et al.
2004/0210500 Al 10/2004 Sobel et al. 2006/0248140 Al 11/2006 Birenheide
2004/0215883 Al 10/2004 Bamford et al. 2006/0248177 Al 11/2006 Dostert et al.
2004/0221261 Al 11/2004 Blevins gggg%j‘éigg i} ﬁgggg gtalcheV
2004/0221285 Al 11/2004 Donovan et al. anev
2004/0221294 Al 11/2004 Klamuk et al. 2006/0248200 Al 11/2006 Stanev
2004/0243709 A1 12/2004 Kalyanavarathan et al. 2006/0248234 Al 11/2006 Pope et al.
2004/0250248 Al 12/2004 Halpern et al. 2006/0248283 Al 112006 Galchev et al.
2005/0055686 Al 3/2005 Buban et al. 2006/0248284 Al 11/2006 Petev
2005/0065973 Al 3/2005 Steensgaard et al. 2006/0248350 A1 11/2006 Stanev
2005/0071459 Al 3/2005 Costa-Requena et al. 2006/0253558 Al 11/2006 Acree et al.
2005/0086237 Al 4/2005 Monnie et al. 2006/0271586 Al 11/2006 Federighi et al.
2005/0091252 Al 4/2005 Liebich et al. 2006/0282509 Al 12/2006 Kilian et al.
2005/0091388 Al 4/2005 Kamboh et al. 2006/0294253 Al 12/2006 Linderman
2005/0102670 Al 5/2005 Bretl et al. 2007/0027877 Al 2/2007 Droshev et al.
%882;8}%?32; i} ggggg })yen}i;ar Zt al. 2007/0050768 Al 3/2007 Brown et al.
eshpande 2007/0055781 Al 3/2007 Fleischer et al.
2005/0138193 Al 6/2005 Encarnacion et al. 2007/0067469 Al 3/2007 Lulk et al.
2005/0160396 Al 7/2005 Chadzynski
2005/0180429 Al /2005 Ghahremani et al. 588;//8};5232 2} 2@88; éﬁzﬁ Z: Zi
2005/0182844 Al 82005 Johnson et al. 2007/0156869 Al 7/2007 Galchev et al
2005/0188068 Al 82005 Kilian 00710156907 Al 72007 Caloh .
2005/0198199 Al 9/2005 Dowling alchev o al.
2005/0216421 Al 9/2005 Barry ef al. 2007/0195959 Al 82007 Clarke
2005/0216502 Al 9/2005 Kaura et al. 2007/0226683 Al 9/2007 Stoodley et al.
2005/0246714 Al 11/2005 Moore et al. 2007/0245167 A1 10/2007 De La Cruz et al.
2005/0256880 Al 11/2005 Nam Koong et al. 2007/0250779 Al 10/2007 Wallach et al.
2005/0268294 Al 12/2005 Petev et al. 2007/0255722 Al 11/2007 Leffert et al.
2005/0278270 Al 12/2005 Carr et al. 2007/0261043 A1 11/2007 Ho et al.
2005/0278278 Al 12/2005 Petev 2008/0086564 Al 4/2008 Putman et al.
2005/0278341 Al 12/2005 Kostadinov et al. 2008/0127050 Al 5/2008 Wang et al.
2005/0278346 Al 12/2005 Shang et al. 2008/0162547 Al 7/2008 Bonev
2005/0283585 Al 12/2005 Sexton et al. 2008/0162552 Al 7/2008 Bonev
2005/0289536 Al 12/2005 Nayak et al. 2008/0163063 Al 7/2008 Bonev
2006/0026286 Al 2/2006 Lei et al. 2008/0163124 Al 7/2008 Bonev
2006/0029054 Al 2/2006 Breh et al. 2008/0201417 Al 82008 McCain et al.

US 9,432,240 B2
Page 4

(56) References Cited
U.S. PATENT DOCUMENTS
2008/0222270 Al

2009/0150985 Al
2012/0296961 Al

9/2008 Gilbert
6/2009 Chan et al.
11/2012 Stanev et al.

FOREIGN PATENT DOCUMENTS

EP 1387262 Al 2/2004
WO WO0-0023898 Al 4/2000
WO WO0-0142908 A2 6/2001
WO WO0-03073204 A2 9/2003
WO WO0-2004038586 A2 5/2004

OTHER PUBLICATIONS

U.S. Appl. No. 11/118,018, filed Apr. 29, 2005, Persistent Storage
Implementations for Session Data Within a Multi-Tiered Enterprise
Network.

U.S. Appl. No. 11/118,020, filed Apr. 29, 2005, Shared closure
persistence of session state information.

U.S. Appl. No. 11/117,993, filed Apr. 29, 2005, Internal persistence
of session state information.

U.S. Appl. No. 11/117,851, filed Apr. 29, 2005, Flexible Failover
Configuration.

U.S. Appl. No. 11/025,549, filed Dec. 28, 2004, Session Lifecycle
Management Within a Multi-Tiered Enterprise Network.

U.S. Appl. No. 11/118,976, filed Apr. 29, 2005, External persistence
of session state information.

U.S. Appl. No. 11/118,890, filed Apr. 29, 2005, Shared Memory
Implementations for Session Data Within a Multi-Tiered Enterprise
Network.

U.S. Appl. No. 11/025,200, filed Dec. 28, 2004, Session Manage-
ment Within a Multi-Tiered Enterprise Network.

U.S. Appl. No. 13/483,848, filed May 30, 2012, Session Manage-
ment Within a Multi-Tiered Enterprise Network.

“U.S. Appl. No. 10/749,617, Non-Final Office Action mailed Apr. 9,
20087, 12 pgs.

“U.S. Appl. No. 10/864,185, Final Office Action mailed Mar. 17,
2008, 15 pgs.

“U.S. Appl. No. 10/949,541, Non Final Office Action mailed May
30, 20087, 18 pgs.

“U.S. Appl. No. 11/012,803, Final Office Action mailed Aug. 28,
20077, 15 pgs.

“U.S. Appl. No. 11/012,803, Non Final Office Action mailed Jan.
24, 20087, 13 pgs.

“U.S. Appl. No. 11/012,803, Non Final Office Action mailed Mar.
16, 20077, 14 pgs.

“U.S. Appl. No. 11/012,803, Non Final Office Action mailed Dec.
23, 20087, 19 pgs.

“U.S. Appl. No. 11/013,277, Final Office Action mailed Aug. 17,
20077, 14 pgs.

“U.S. Appl. No. 11/013,277, Non Final Office Action mailed Jan. 7,
2008, 16 pgs.

“U.S. Appl. No. 11/013,277, Non Final Office Action mailed Mar.
12, 20077, 13 pgs.

“U.S. Appl. No. 11/024,546, Final Office Action mailed Oct. 3,
20077, 14 pgs.

“U.S. Appl. No. 11/024,546, Non Final Office Action mailed Mar.
17, 20087, 15 pgs.

“U.S. Appl. No. 11/024,546, Non Final Office Action mailed Apr. 6,
20077, 19 pgs.

“U.S. Appl. No. 11/024,546, Notice of Allowance mailed Mar. 16,
2009, 4 pgs.

“U.S. Appl. No. 11/024,546, Notice of Allowance mailed Nov. 4,
20087, 10 pgs.

“U.S. Appl. No. 11/024,546, Response filed Jan. 3, 2008 to Final
Office Action mailed Oct. 3, 2007, 19 pgs.

“U.S. Appl. No. 11/024,546, Response filed Jul. 6, 2007 to Non
Final Office Action mailed Apr. 6, 20077, 15 pgs.

“U.S. Appl. No. 11/024,554, Advisory Action mailed Mar. 4, 2009”,
3 pgs.

“U.S. Appl. No. 11/024,554, Final Office Action mailed Oct. 29,
20077, 8 pgs.

“U.S. Appl. No. 11/024,554, Final Office Action mailed Nov. 26,
20087, 11 pgs.

“U.S. Appl. No. 11/024,554, Non Final Office Action mailed Apr.
26, 20077, 9 pgs.

“U.S. Appl. No. 11/024,554, Non Final Office Action mailed Jun.
12, 20097, 12 pgs.

“U.S. Appl. No. 11/024,554, Preliminary Amendment filed Mar. 16,
2009, 12 pgs.

“U.S. Appl. No. 11/024,554, Response filed Feb. 19, 2009 to Final
Office Action mailed Nov. 26, 2008”, 5 pgs.

“U.S. Appl. No. 11/024,554, Response filed Feb. 29, 2008 to Final
Office Action mailed Oct. 29, 20077, 14 pgs.

“U.S. Appl. No. 11/024,554, Response filed Jul. 26, 2007 to Non
Final Office Action mailed Apr. 26, 20077, 14 pgs.

“U.S. Appl. No. 11/024,554, Response filed Jul. 31, 2008 to Non
Final Office Action mailed May 28, 2008”, 11 pgs.

“U.S. Appl. No. 11/024,565, Final Office Action mailed Jun. 12,
20077, 18 pgs.

“U.S. Appl. No. 11/024,565, Non Final Office Action mailed Jun.
19, 20087, 20 pgs.

“U.S. Appl. No. 11/024,565, Non Final Office Action mailed Oct.
25, 20077, 15 pgs.

“U.S. Appl. No. 11/024,565, Non Final Office Action mailed Dec.
18, 2006, 18 pgs.

“U.S. Appl. No. 11/024,565, Notice of Allowance mailed Feb. 20,
20097, 8 pgs.

“U.S. Appl. No. 11/024,565, Response filed Mar. 19, 2007 to Non
Final Office Action mailed Dec. 18, 20067, 13 pgs.

“U.S. Appl. No. 11/024,565, Response filed Jul. 26, 2007 to Final
Office Action mailed Jun. 12, 20077, 14 pgs.

“U.S. Appl. No. 11/024,565, Response filed Sep. 19, 2008 to Non
Final Office Action mailed Jun. 19, 2008”, 10 pgs.

“U.S. Appl. No. 11/024,591, Final Office Action mailed Oct. 10,
20077, 14 pgs.

“U.S. Appl. No. 11/024,591, Non Final Office Action mailed Apr.
13, 20077, 18 pgs.

“U.S. Appl. No. 11/024,591, Response filed Jan. 10, 2008 to Final
Office Action mailed Oct. 10, 20077, 19 pgs.

“U.S. Appl. No. 11/024,591, Response filed Jun. 4, 2008 to Non
Final Office Action mailed Mar. 11, 2008”, 4 pgs.

“U.S. Appl. No. 11/024,591, Response filed Jul. 6, 2007 to Non
Final Office Action mailed Apr. 13, 20077, 15 pgs.

“U.S. Appl. No. 11/024,613, Notice of Allowance mailed Dec. 31,
20077, 2 pgs.

“U.S. Appl. No. 11/024,614, Non Final Office Action mailed Aug.
27, 20077, 9 pgs.

“U.S. Appl. No. 11/024,651, Final Office Action mailed Oct. 9,
20077, 9 pgs.

“U.S. Appl. No. 11/025,178, Final Office Action mailed Feb. 20,
20087, 17 pgs.

“U.S. Appl. No. 11/025,178, Notice of Allowance mailed Jun. 9,
20087, 7 pgs.

“U.S. Appl. No. 11/025,178, Notice of Allowance mailed Aug. 10,
20077, 7 pgs.

“U.S. Appl. No. 11/025,200, Advisory Action mailed Feb. 3, 20107,
3 pgs.

“U.S. Appl. No. 11/025,200, Decision on Pre-Appeal Brief Request
mailed Apr. 25, 20117, 2 pgs.

“U.S. Appl. No. 11/025,200, Examiner Interview Summary mailed
Jan. 31, 20127, 3 pgs.

“U.S. Appl. No. 11/025,200, Examiner Interview Summary mailed
Mar. 20, 2009, 3 pgs.

“U.S. Appl. No. 11/025,200, Examiner Interview Summary mailed
Jun. 23, 20117, 2 pgs.

“U.S. Appl. No. 11/025,200, Final Office Action mailed Nov. 16,
2009, 10 pgs.

“U.S. Appl. No. 11/025,200, Final Office Action mailed Dec. 16,
20107, 11 pgs.

US 9,432,240 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

“U.S. Appl. No. 11/025,200, Non Final Office Action mailed Mar.
24, 20097, 12 pgs.

“U.S. Appl. No. 11/025,200, Non Final Office Action mailed Jul. 12,
20117, 19 pgs.

“U.S. Appl. No. 11/025,200, Non Final Office Action mailed Nov.
4, 20117, 20 pgs.

“U.S. Appl. No. 11/025,200, Non-Final Office Action mailed Mar.
3, 20107, 11 pgs.

“U.S. Appl. No. 11/025,200, Non-Final Office Action mailed Aug.
6, 20107, 11 pgs.

“U.S. Appl. No. 11/025,200, Notice of Allowance mailed Feb. 21,
20127, 21 pgs.

“U.S. Appl. No. 11/025,200, Pre-Appeal Brief Request filed Mar. 8,
20117, 5 pgs.

“U.S. Appl. No. 11/025,200, Preliminary Amendment filed Mar. 21,
2005, 4 pgs.

“U.S. Appl. No. 11/025,200, Response filed Jan. 12, 2010 to Final
Office Action mailed Nov. 16, 2009”, 5 pgs.

“U.S. Appl. No. 11/025,200, Response filed Feb. 2, 2012 to Non
Final Office Action mailed Nov. 4, 20117, 12 pgs.

“U.S. Appl. No. 11/025,200, Response filed Feb. 9, 2010 to Advi-
sory Action mailed Feb. 3, 20107, 15 pgs.

“U.S. Appl. No. 11/025,200, Response filed May 26, 2010 to Non
Final Office Action mailed Mar. 3, 2010, 17 pgs.

“U.S. Appl. No. 11/025,200, Response filed Jun. 24, 2009 to Non
Final Office Action mailed Mar. 24, 20097, 14 pgs.

“U.S. Appl. No. 11/025,200, Response filed Oct. 7, 2011 to Non
Final Office Action mailed Jul. 12, 20117, 17 pgs.

“U.S. Appl. No. 11/025,200, Response filed Nov. 1, 2010 to Non
Final Office Action mailed Aug. 6, 20107, 15 pgs.

“Application Serial No. 11/02 Non-Final Office Action mailed Sep.
3, 20107, 19 pgs.

“U.S. Appl. No. 11/025,316, Advisory Action mailed Apr. 21,
20107, 2 pgs.

“U.S. Appl. No. 11/025,316, Examiner Interview Summary mailed
May 3, 20117, 1 pg.

“U.S. Appl. No. 11/025,316, Examiner Interview Summary mailed
Aug. 12, 20107, 2 pgs.

“U.S. Appl. No. 11/025,316, Final Office Action mailed Feb. 17,
20117, 19 pgs.

“U.S. Appl. No. 11/025,316, Final Office Action mailed Feb. 23,
20107, 11 pgs.

“U.S. Appl. No. 11/025,316, Non-Final Office Action mailed Jul.
21, 20097, 9 pgs.

“U.S. Appl. No. 11/025,316, Notice of Allowance mailed May 3,
20117, 11 pgs.

“U.S. Appl. No. 11/025,316, Response filed Apr. 6, 2010 to Final
Office Action mailed Feb. 23, 20107, 9 pgs.

“U.S. Appl. No. 11/025,316, Response filed Apr. 12, 2011 to Final
Office Action mailed Feb. 17, 20117, 16 pgs.

“U.S. Appl. No. 11/025,316, Response filed Oct. 21, 2009 to Non
Final Office Action mailed Jul. 21, 2009”, 10 pgs.

“U.S. Appl. No. 11/025,316, Response filed Dec. 1, 2010 to Non
Final Office Action mailed Sep. 3, 20107, 18 pgs.

“U.S. Appl. No. 11/025,378, Final Office Action mailed Aug. 14,
2008, 14 pgs.

“U.S. Appl. No. 11/025,378, Non Final Office Action mailed Mar.
31, 20087, 16 pgs.

“U.S. Appl. No. 11/025,482, Final Office Action mailed Jul. 10,
20077, 16 pgs.

“U.S. Appl. No. 11/025,482, Non Final Office Action mailed Oct.
29, 20087, 13 pgs.

“U.S. Appl. No. 11/025,549, Final Office Action mailed Nov. 4,
2009, 9 pgs.

“U.S. Appl. No. 11/025,549, Non Final Office Action mailed Feb.
23, 20127, 9 pgs.

“U.S. Appl. No. 11/025,549, Non-Final Office Action mailed Mar.
24, 20097, 13 pgs.

“U.S. Appl. No. 11/025,549, Notice of Allowance mailed May 31,
20127, 8 pgs.

“U.S. Appl. No. 11/025,549, Preliminary Amendment filed Mar. 22,
2005, 4 pgs.

“U.S. Appl. No. 11/025,549, Response filed Jan. 4, 2010 to Final
Office Action mailed Nov. 4, 20097, 13 pgs.

“U.S. Appl. No. 11/025,549, Response filed May 8, 2012 to Non
Final Office Action mailed Feb. 23, 20127, 9 pgs.

“U.S. Appl. No. 11/025,549, Response filed Jun. 24, 2009 to Non
Final Office Action mailed Mar. 24, 20097, 9 pgs.

“U.S. Appl. No. 11/025,714, Corrected Notice of Allowance mailed
Jun. 19, 20097, 4 pgs.

“U.S. Appl. No. 11/025,714, Notice of Allowance mailed Jan. 29,
20107, 7 pgs.

“U.S. Appl. No. 11/025,714, Notice of Allowance mailed Jun. 9,
2009, 10 pgs.

“U.S. Appl. No. 11/025,714, Notice of Allowance mailed Sep. 28,
20097, 7 pgs.

“U.S. Appl. No. 11/025,764, Notice of Allowance mailed Feb. 13,
20077, 3 pgs.

“U.S. Appl. No. 11/025,764, Notice of Allowance mailed Apr. 18,
20087, 6 pgs.

“U.S. Appl. No. 11/025,764, Notice of Allowance mailed Aug. 20,
20077, 3 pgs.

“U.S. Appl. No. 11/025,764, Preliminary Amendment filed Apr. 11,
20057, 5 pgs.

“U.S. Appl. No. 11/025,764, Applicant’s Comments filed May 14,
2007 Concerning Notice of Allowance mailed Feb. 13, 2007, 8 pgs.
“U.S. Appl. No. 11/117,851, Examiner Interview Summary mailed
Sep. 2, 20117, 3 pgs.

“U.S. Appl. No. 11/117,851, Final Office Action mailed Nov. 30,
20117, 27 pgs.

“U.S. Appl. No. 11/117,851, Final Office Action mailed Dec. 6,
20107, 17 pgs.

“U.S. Appl. No. 11/117,851, Non Final Office Action mailed May
25, 20117, 24 pgs.

“U.S. Appl. No. 11/117,851, Non-Final Office Action mailed Mar.
17, 20107, 17 pgs.

“U.S. Appl. No. 11/117,851, Notice of Allowance mailed Jul. 11,
2013, 12 pgs.

“U.S. Appl. No. 11/117,851, Notice of Non-Compliant Amendment
mailed Mar. 11, 20117, 2 pgs.

“U.S. Appl. No. 11/117,851, Response filed Feb. 17, 2012 to Final
Office Action mailed Nov. 30, 20117, 17 pgs.

“U.S. Appl. No. 11/117,851, Response filed Mar. 3, 2011 to Final
Office Action mailed Dec. 6, 20107, 15 pgs.

“U.S. Appl. No. 11/117,851, Response filed Mar. 17, 2011 to Notice
of Non-Compliant Amendment mailed Mar. 11, 20117, 15 pgs.
“U.S. Appl. No. 11/117,851, Response filed Jun. 16, 2010 to Non
Final Office Action mailed Mar. 17, 20107, 17 pgs.

“U.S. Appl. No. 11/117,851, Response filed Aug. 25, 2011 to Non
Final Office Action mailed May 25, 20117, 15 pgs.

“U.S. Appl. No. 11/117,851, Response filed Sep. 28, 2010 to
Restriction Requirement mailed Sep. 1, 20107, 8 pgs.

“U.S. Appl. No. 11/117,851, Restriction Requirement mailed Sep. 1,
20107, 6 pgs.

“U.S. Appl. No. 11/117,876, Final Office Action mailed Jan. 27,
20097, 8 pgs.

“U.S. Appl. No. 11/117,993, Final Office Action mailed Jun. 23,
2010, 18 pgs.

“U.S. Appl. No. 11/117,993, Non Final Office Action mailed Sep.
21, 20097, 11 pgs.

“U.S. Appl. No. 11/117,993, Notice of Allowance mailed Sep. 20,
20107, 7 pgs.

“U.S. Appl. No. 11/117,993, Response filed Aug. 23, 2010 to Final
Office Action mailed Jun. 23, 2010”, 9 pgs.

“U.S. Appl. No. 11/117,993, Response filed Dec. 16, 2009 to Non
Final Office Action mailed Sep. 21, 2009”, 15 pgs.

“U.S. Appl. No. 11/118,018, Appeal Brief filed Mar. 11, 20117, 38
pgs.

“U.S. Appl. No. 11/118,018, Final Office Action mailed Apr. 9,
2010, 29 pgs.

US 9,432,240 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

“U.S. Appl. No. 11/118,018, Final Office Action mailed Dec. 21,
20107, 32 pgs.

“U.S. Appl. No. 11/118,018, Non Final Office Action mailed Oct.
20, 20097, 26 pgs.

“U.S. Appl. No. 11/118,018, Non-Final Office Action mailed Mar.
20, 20097, 13 pgs.

“U.S. Appl. No. 11/118,018, Non-Final Office Action mailed Jul. 9,
20107, 27 pgs.

“U.S. Appl. No. 11/118,018, Notice of Allowance mailed May 20,
20117, 15 pgs.

“U.S. Appl. No. 11/118,018, Notice of Allowance mailed Aug. 8,
20117, 11 pgs.

“U.S. Appl. No. 11/118,018, Response filed Jan. 19, 2010 to Non
Final Office Action mailed Oct. 20, 20097, 11 pgs.

“U.S. Appl. No. 11/118,018, Response filed Jun. 16, 2010 to Final
Office Action mailed Apr. 9, 20107, 11 pgs.

“U.S. Appl. No. 11/118,018, Response filed Jun. 19, 2009 to Non
Final Office Action mailed Mar. 20, 2009”7, 14 pgs.

“U.S. Appl. No. 11/118,018, Response filed Oct. 4, 2010 to Non
Final Office Action mailed Jul. 9, 20107, 13 pgs.

“U.S. Appl. No. 11/118,019, Advisory Action mailed Dec. 3, 20097,
3 pgs.

“U.S. Appl. No. 11/118,019, Appeal Brief filed Jan. 11, 20117, 27
pgs.

“U.S. Appl. No. 11/118,019, Examiner’s Answer to Appeal Brief
mailed Mar. 16, 20117, 33 pgs.

“U.S. Appl. No. 11/118,019, Final Office Action mailed Aug. 18,
20107, 25 pgs.

“U.S. Appl. No. 11/118,019, Final Office Action mailed Sep. 16,
20097, 17 pgs.

“U.S. Appl. No. 11/118,019, Non Final Office Action mailed Nov.
13, 2008”, 9 pgs.

“U.S. Appl. No. 11/118,019, Non-Final Office Action mailed Mar.
16, 20107, 19 pgs.

“U.S. Appl. No. 11/118,019, Pre-Appeal Brief Request mailed Nov.
10, 20107, 5 pgs.

“U.S. Appl. No. 11/118,019, Reply Brief filed May 4, 20117, 9 pgs.
“U.S. Appl. No. 11/118,019, Response filed Feb. 12, 2009 to Non
Final Office Action mailed Nov. 13, 2008”, 5 pgs.

“U.S. Appl. No. 11/118,019, Response filed Jun. 9, 2010 to Non
Final Office Action mailed Mar. 16, 20107, 12 pgs.

“U.S. Appl. No. 11/118,019, Response filed Nov. 11, 2009 to Final
Office Action mailed Sep. 16, 20097, 8 pgs.

“U.S. Appl. No. 11/118,020, Advisory Action mailed Jan. 14, 20107,
3 pgs.

“U.S. Appl. No. 11/118,020, Advisory Action mailed Oct. 18,
20107, 3 pgs.

“U.S. Appl. No. 11/118,020, Appeal Brief filed Jan. 4, 20117, 19
pgs.

“U.S. Appl. No. 11/118,020, Decision on Pre-Appeal Brief Request
mailed Dec. 17, 20107, 2 pgs.

“U.S. Appl. No. 11/118,020, Examiner’s Answer to Appeal Brief
mailed Mar. 24, 20117, 23 pgs.

“U.S. Appl. No. 11/118,020, Final Office Action mailed Aug. 5,
20107, 22 pgs.

“U.S. Appl. No. 11/118,020, Final Office Action mailed Nov. 5,
2009”7, 12 pgs.

“U.S. Appl. No. 11/118,020, Non Final Office Action mailed Feb.
24, 2009”7, 9 pgs.

“U.S. Appl. No. 11/118,020, Non-Final Office Action mailed Feb.
26, 20107, 19 pgs.

“U.S. Appl. No. 11/118,020, Pre-Appeal Brief Request filed Nov. 1,
20107, 5 pgs.

“U.S. Appl. No. 11/118,020, Response filed Jan. 5, 2010 to Final
Office Action mailed Nov. 5, 20097, 14 pgs.

“U.S. Appl. No. 11/118,020, Response filed May 18, 2010 to Non
Final Office Action mailed Feb. 26, 20107, 15 pgs.

“U.S. Appl. No. 11/118,020, Response filed May 26, 2009 to Non
Final Office Action mailed Feb. 24, 2009, 12 pgs.

“U.S. Appl. No. 11/118,020, Response filed Sep. 30, 2010 to Final
Office Action mailed Aug. 5, 20107, 13 pgs.

“U.S. Appl. No. 11/118,890, Examiner Interview Summary mailed
Mar. 2, 2010”, 3 pgs.

“U.S. Appl. No. 11/118,890, Advisory Action mailed Sep. 14,
20097, 3 pgs.

“U.S. Appl. No. 11/118,890, Appeal Brief filed Jun. 21, 20107, 21
pgs.

“U.S. Appl. No. 11/118,890, Decision on Pre-Appeal Brief Request
mailed May 21, 20107, 2 pgs.

“U.S. Appl. No. 11/118,890, Examiner’s Answer to Appeal Brief
mailed Sep. 3, 20107, 12 pgs.

“U.S. Appl. No. 11/118,890, Final Office Action mailed May 6,
2009, 10 pgs.

“U.S. Appl. No. 11/118,890, Non Final Office Action mailed Sep.
18, 20087, 8 pgs.

“U.S. Appl. No. 11/118,890, Non-Final Office Action mailed Dec.
24, 20097, 10 pgs.

“U.S. Appl. No. 11/118,890, Pre-Appeal Brief Request filed Mar.
24, 20107, 5 pgs.

“U.S. Appl. No. 11/118,890, Reply Brief filed Oct. 28, 20107, 4 pgs.
“U.S. Appl. No. 11/118,890, Response filed Jan. 20, 2009 to Non
Final Office Action mailed Sep. 18, 2008”, 18 pgs.

“U.S. Appl. No. 11/118,890, Response filed Sep. 2, 2009 to Final
Office Action mailed May 6, 20097, 11 pgs.

“U.S. Appl. No. 11/118,976, Advisory Action mailed Mar. 30,
20097, 3 pgs.

“U.S. Appl. No. 11/118,976, Examiner Interview Summary mailed
Mar. 2, 2010”, 3 pgs.

“U.S. Appl. No. 11/118,976, Final Office Action mailed Feb. 3,
20097, 17 pgs.

“U.S. Appl. No. 11/118,976, Final Office Action mailed Feb. 21,
2008, 15 pgs.

“U.S. Appl. No. 11/118,976, Non Final Office Action mailed Aug.
21, 20087, 17 pgs.

“U.S. Appl. No. 11/118,976, Non Final Office Action mailed Aug.
31, 20077, 14 pgs.

“U.S. Appl. No. 11/118,976, Non-Final Office Action mailed Jun.
11, 20097, 22 pgs.

“U.S. Appl. No. 11/118,976, Non-Final Office Action mailed Dec.
8, 20097, 24 pgs.

“U.S. Appl. No. 11/118,976, Notice of Allowance mailed May 17,
2010, 18 pgs.

“U.S. Appl. No. 11/118,976, Response filed Mar. 8, 2010 to Non
Final Office Action mailed Dec. 8, 20097, 20 pgs.

“U.S. Appl. No. 11/118,976, Response filed Mar. 19, 2009 to Final
Office Action mailed Feb. 3, 20097, 11 pgs.

“U.S. Appl. No. 11/118,976, Response filed May 21, 2008 to Final
Office Action mailed Feb. 21, 2008, 11 pgs.

“U.S. Appl. No. 11/118,976, Response filed Sep. 9, 2009 to Non
Final Office Action mailed Jun. 11, 20097, 18 pgs.

“U.S. Appl. No. 11/118,976, Response filed Nov. 21, 2008 to Non
Final Office Action mailed Aug. 21, 2008”, 13 pgs.

“U.S. Appl. No. 11/118,976, Response filed Nov. 30, 2007 to Non
Final Office Action mailed Aug. 31, 20077, 13 pgs.

“U.S. Appl. No. 11/119,084, Non Final Office Action mailed Oct. 6,
20087, 9 pgs.

“U.S. Appl. No. 11/185,199, Final Office Action mailed Mar. 18,
20087, 13 pgs.

“U.S. Appl. No. 11/185,199, Final Office Action mailed Mar. 19,
2009, 15 pgs.

“U.S. Appl. No. 11/185,199, Non Final Office Action mailed Sep.
11, 20087, 12 pgs.

“U.S. Appl. No. 11/185,199, Non-Final Office Action mailed Jun.
22, 20097, 19 pgs.

“U.S. Appl. No. 11/185,199, Response filed Jun. 8, 2009 to Final
Office Action mailed Mar. 19, 20097, 13 pgs.

“U.S. Appl. No. 11/647,956, Non Final Office Action mailed Mar.
9, 20117, 25 pgs.

“U.S. Appl. No. 11/647,956, Non Final Office Action mailed Aug.
17, 20117, 30 pgs.

“U.S. Appl. No. 11/647,956, Non-Final Office Action mailed Oct. 8,
20107, 27 pgs.

US 9,432,240 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

“U.S. Appl. No. 11/647,956, Response filed May 31, 2011 to Non
Final Office Action mailed Mar. 9, 20117, 10 pgs.

“U.S. Appl. No. 11/647,956, Response filed Jun. 25, 2012 to Final
Office Action mailed Feb. 24, 20127, 25 pgs.

“U.S. Appl. No. 11/647,956, Response filed Dec. 13, 2011 to Non
Final Office Action mailed Aug. 17, 20117, 9 pgs.

“U.S. Appl. No. 11/647,956, Response filed Dec. 15, 2010 to Non
Final Office Action mailed Oct. 8, 20107, 14 pgs.

“U.S. Appl. No. 11/647,957, Advisory Action mailed Sep. 9, 2009”,
3 pgs.

“U.S. Appl. No. 11/647,957, Final Office Action mailed Jun. 30,
2009”7, 12 pgs.

“U.S. Appl. No. 11/647,957, Non Final Office Action mailed Feb.
11, 2009, 9 pgs.

“U.S. Appl. No. 11/647,957, Notice of Allowance mailed Mar. 25,
2010, 6 pgs.

“U.S. Appl. No. 11/647,957, Notice of Allowance mailed Dec. 31,
2009, 6 pgs.

“U.S. Appl. No. 11/647,957, Response filed Apr. 16, 2009 to Non
Final Office Action mailed Feb. 11, 20097, 13 pgs.

“U.S. Appl. No. 11/647,957, Response filed Aug. 20, 2009 to Final
Office Action mailed Jun. 30, 2009”, 11 pgs.

“U.S. Appl. No. 11/647,957, Response filed Sep. 23, 2009 to
Advisory Action mailed Sep. 9, 20097, 11 pgs.

“U.S. Appl. No. 11/647,979, Advisory Action mailed Aug. 25,
20107, 3 pgs.

“U.S. Appl. No. 11/647,979, Advisory Action mailed Sep. 20,
20127, 3 pgs.

“U.S. Appl. No. 11/647,979, Appeal Brief mailed Jan. 16, 2013, 24
pgs.

“U.S. Appl. No. 11/647,979, Decision on Pre-Appeal Brief Request
mailed Dec. 17, 20127, 2 pgs.

“U.S. Appl. No. 11/647,979, Examiner’s Answer to Appeal Brief
mailed Apr. 3, 2013”, 5 pgs.

“U.S. Appl. No. 11/647,979, Final Office Action mailed Jun. 28,
20107, 10 pgs.

“U.S. Appl. No. 11/647,979, Final Office Action mailed Jul. 8,
2009”7, 11 pgs.

“U.S. Appl. No. 11/647,979, Final Office Action mailed Jul. 13,
20127, 10 pgs.

“U.S. Appl. No. 11/647,979, Final Office Action mailed Oct. 2,
2009”7, 11 pgs.

“U.S. Appl. No. 11/647,979, Non Final Office Action mailed Feb.
19, 20097, 7 pgs.

“U.S. Appl. No. 11/647,979, Non Final Office Action mailed Dec.
13, 20117, 10 pgs.

“U.S. Appl. No. 11/647,979, Non-Final Office Action mailed Feb. 2,
2010, 9 pgs.

“U.S. Appl. No. 11/647,979, Pre-Appeal Brief Request filed Oct. 5,
20127, 5 pgs.

“U.S. Appl. No. 11/647,979, Reply Brief filed Jun. 3, 2013”, 7 pgs.
“U.S. Appl. No. 11/647,979, Response filed Apr. 8, 2009 to Non
Final Office Action mailed Feb. 19, 2009, 14 pgs.

“U.S. Appl. No. 11/647,979, Response filed Apr. 23, 2010 to Non
Final Office Action mailed Feb. 2, 20107, 13 pgs.

“U.S. Appl. No. 11/647,979, Response filed May 14, 2012 to Non
Final Office Action mailed Dec. 13, 20117, 14 pgs.

“U.S. Appl. No. 11/647,979, Response filed Aug. 18, 2010 to Final
Office Action mailed Jun. 28, 20107, 16 pgs.

“U.S. Appl. No. 11/647,979, Response filed Sep. 9, 2009 to Final
Office Action mailed Jul. 8, 20097, 12 pgs.

“U.S. Appl. No. 11/647,979, Response filed Sep. 11, 2012 to Final
Office Action mailed Jul. 13, 20127, 15 pgs.

“U.S. Appl. No. 11/647,979, Response filed Dec. 22, 2009 to Final
Office Action mailed Oct. 2, 20097, 15 pgs.

“U.S. Appl. No. 11/647,982, Advisory Action mailed Jul. 8, 20107,
2 pgs.

“U.S. Appl. No. 11/647,982, Advisory Action mailed Sep. 10,
2009, 3 pgs.

“U.S. Appl. No. 11/647,982, Examiner Interview Summary mailed
Jun. 23, 20107, 3 pgs.

“U.S. Appl. No. 11/647,982, Final Office Action mailed Mar. 16,
20117, 8 pgs.

“U.S. Appl. No. 11/647,982, Final Office Action mailed Apr. 29,
20107, 9 pgs.

“U.S. Appl. No. 11/647,982, Final Office Action mailed Jun. 29,
20097, 9 pgs.

“U.S. Appl. No. 11/647,982, Non Final Office Action mailed Feb.
27, 20097, 8 pgs.

“U.S. Appl. No. 11/647,982, Non Final Office Action mailed Apr.
26, 2012”7, 9 pgs.

“U.S. Appl. No. 11/647,982, Non-Final Office Action mailed Oct.
28, 20107, 8 pgs.

“U.S. Appl. No. 11/647,982, Non-Final Office Action mailed Nov.
12, 20097, 8 pgs.

“U.S. Appl. No. 11/647,982, Response filed Jan. 11, 2011 to Non
Final Office Action mailed Oct. 28, 20107, 10 pgs.

“U.S. Appl. No. 11/647,982, Response filed Feb. 5, 2010 to Non
Final Office Action mailed Nov. 12, 2009”, 11 pgs.

“U.S. Appl. No. 11/647,982, Response filed Apr. 8, 2009 to Non
Final Office Action mailed Feb. 27, 2009”, 13 pgs.

“U.S. Appl. No. 11/647,982, Response filed May 4, 2011 to Final
Office Action mailed Mar. 16, 20117, 11 pgs.

“U.S. Appl. No. 11/647,982, Response filed Jun. 22, 2010 to Final
Office Action mailed Apr. 29, 20107, 9 pgs.

“U.S. Appl. No. 11/647,982, Response filed Aug. 20, 2009 to Final
Office Action mailed Jun. 29, 2009”, 9 pgs.

“U.S. Appl. No. 11/647,982, Response filed Sep. 23, 2009 to
Advisory Action mailed Sep. 10, 2009”, 10 pgs.

“U.S. Appl. No. 12/472,256, Preliminary Amendment filed May 26,
20097, 3 pgs.

“U.S. Appl. No. 13/483,848 , Response filed Feb. 13, 2013 to Non
Final Office Action mailed Oct. 18, 20127, 12 pgs.

“U.S. Appl. No. 13/483,848 , Response filed May 21, 2013 to Final
Office Action mailed Feb. 28, 20137, 11 pgs.

“U.S. Appl. No. 13/483,848, Final Office Action mailed Feb. 28,
2013, 14 pgs.

“U.S. Appl. No. 13/483,848, Non Final Office Action mailed Oct.
18, 20127, 12 pgs.

“Furopean Application Serial No. 05028446.2, European Search
Report mailed Dec. 20, 20077, 6 pgs.

“Hierarchy for Package Oracle.ias.cache”, [Online]. Retrieved from
the Internet: <URL: http://download-west.oracle.com/docs/cd/
B15904_01/web.1012/b14018/oracle/ias/cache/p>, (Nov. 2004), 2
pgs.

“IBM Linux Scholar Challenge: Phil and Matt’s”, Clarkson univer-
sity, www.ibm.com/develperworks/ibm/library/i-clarkson/
philandmatt.html, (Jun. 1, 2002), 1-7.

“International Application Serial No. PCT/EP2006/012420, Inter-
national Search Report and Written Opinion mailed May 7, 20077,
13 pgs.

“International Application Serial No. PCT/EP2007/010882, Inter-
national Search Report & Written Opinion dated Jul. 5, 20087, 10
pgs.

“International Application Serial No. PCT/EP2007/010883, Inter-
national Search Report mailed May 6, 2008”, 4 pgs.
“International Application Serial No. PCT/EP2007/010883, Written
Opinion mailed May 6, 2008, 6 pgs.

“International Application Serial No. PCT/EP2007/010886, Inter-
national Search Report mailed May 16, 2008, 4 pgs.
“International Application Serial No. PCT/EP2007/010886, Written
Opinion mailed May 16, 2008, 6 pgs.

“Java 2 v.1.5.0. Class Thread”, [Online]. Retrieved from the Inter-
net: <URL: http://web.archive.org/web/20040604194528/http://
java.sun.com/j2se/1.5.0/docs/api/java/langl Thread html.>, (Jun.
2004), 1-26 pgs.

“JCS Plugin Overview”, [Online]. Retrieved from the Internet:
<URL: http://jakarta.apache.org/jcs/Plugins.html>, (Jul. 2004), 2
pgs.

“Linux threads Frequently Asked Questions (FAQ), by Sean
Walton, KB7rfa”, www.lians.org/linux/threads-faq.html, (Sep. 19,
1996), 1-15.

US 9,432,240 B2
Page 8

(56) References Cited
OTHER PUBLICATIONS

“Microsoft TechNet: Step by step Guide to the Microsoft Manage-
ment Console”, Microsoft Corp,, www.technet.microsoft.com/en-
us/library/bb742442 aspx, (Jan. 1, 2000), 1-7.

“Oracle Application Server 10g Release 2 (10.1.2)”, Oracle, (Nov.
2004), 24 pgs.

“OSCache 2.0.2—All Classes”, [Online]. Retrieved from the Inter-
net: <URL: http://www.jdocs.com/osche/2.0.2/api/com/
opensymphony/oscache/base/overview-frame html>, (Jan. 2004), 1
pg.

“RMI Clients on SAP NetWeaver”, SAP Platform Ecosystem,
(2005), 12 pgs.

“SAP Transactions and the VM Container & Resource Management
in the VM Container, printed”, (Sep. 12, 2009).

“SAP Web Application Server Security Guide”, Version 1.00, (Apr.
29, 2004), 5 pgs.

“Virtual Machine Container: Unbreakable Java”, SAP, (2003), 12
pgs.

“What is LDAP?”, [Online]. Retrieved from the Internet: <URL:
http://www.gracion.com/server/whatldap.html>, (Dec. 7, 2004), 2
pgs.

Barker, et al., “A load balancing framework for adaptive and
asynchronous applications”, Parallet and Distributed Systems, IEEE
Transactions on vol. 15, Issue 2, (Feb. 2004), 183-192.

Barrett, Ryan, “P4 Protocol Specification”, [Online]. Retrieved
from the Internet: <URL: http://ryan barrett.name/p4/doc/html/pro-
tocol.html>, (Sep. 2001), 12 pgs.

Bubak, “Hydra—Decentralized and Adaptive Approach to Distrib-
uted Computing”, PARA, (2000), 242-249 pgs.

Casavant, T. L., et al.,, “A Taxonomy of Scheduling in General-
Purpose Distributed Computing Systems”, IEEE 14(2),
XP000039761, (1998), 141-154.

Dandamudi, S. P, “Reducing Run Queue Contention in Shared
Memory Multiprocessors”, IEEE, XP000657329, (1997), 82-89.
De Pauw, W, et al,, “Web Services Navigator: Visualizing the
Execution of Web Services”, IBM Systems Journal, vol. 44, No. 4,
(2005), 821-845.

De Pauw, Wim, et al., “Visualizing the Execution of Java Pro-
grams”, Software Visualization, International Seminar, Revised
Papers, Lecture Notes in Computer Science, vol. 2269,
XP002477230, ISBN: 3-540-43323-6, (2002), 151-162.

Gilberg, R. F., “Data Structures: A Pseudocode Approach with C”,
Thomson Course Technology 310340, XP002477259, (May 31,
2006), 488-491.

Handy, Jim, “How are Caches Designed?”, The Cache Memory
Book, Academic Press Inc, 2nd Edition, (1998), p. 60.

Hennessy, et al., “Computer Organization and Design the Hardware/
Software Interface”, Morgan Kaufmann Publishers, Inc., (1998),
606.

Horton, Ivor, “Beginning Java 27, WROX Press, (1999), 36, 40, 58,
66.

Jipping, Michael J, et al., “Using Java to teach networking concepts
with a programmable network sniffer”, SIGCSE Bull. 35, 1, 001=
http://doi.acm.org/10.1145/792548.611948, (Jan. 2003), 120-124.
Kaushik, Dutta, et al., “ReDAL: An Efficient and Practical Request
Distribution Technique for the Application Layer”, Internet Article,
Singapore Management University, [Online]. Retrieved from the
Internet: <URL: http://www.sis.smu.edu.sg/Research/diagram/
kaushik_ dutta_ paper.pdf>, (Nov. 11, 2005), 1-30.

Keahey, K., “A Brief Tutorial on CORBA”, [Online]. Retrieved
from the Internet: <URL: http://www.cs.indiana.edu/~kksiazek/
tuto html>, 5 pgs.

Kirby, Graham, et al., “OCB: An Object/Class Browser for Java”,
Proceedings of the Second International Workshop on Persistence
and Java (PJW2), [Online]. Retrieved from the Internet: <URL:
http://ftp.ncnu.edu/tw/JavaDownload/Docs/Persistence/Com.sun.
labs.forest.pjava.pjw2__pdf.pdf>, (Aug. 1997), 89-105.

Mitchell, Nick, “The Runtime Structure of Object Ownership”,
Object-Oriented Programming Lecture Notes in Computer Science,

ECOOP, LNCS, Springer-Verlag Berlin Heidelberg, XP019041424,
ISBN: 978-3-540-35726-1, (Sep. 2006), 74-98.

Oetiker, Tobias, “SEPP Software Installation and Sharing System”,
Proceedings of the Twelfth Systems Administration Conference
(LISA °98), Boston, Massachusetts, (Dec. 6-11, 1998), 253-260.
Osdir, “RE: Barracude: Reference Objects in Session/
ServletContext”, msg#00056, (Nov. 2002).

Parnas, Dagfinn, “SAP Virtual Machine Container”, [Online].
Retrieved from the Internet: <URL: https://weblogs.sdn.sap.com/
pub/wig/940>, (Oct. 23, 2004), 4 pgs.

Pasin, Macia, et al., “High-Available Enterprise JavaBeans Using
Group Communication System Support”, XP002285985, 1-6.
Polk, Jennifer, et al., “Oracle Database Net Services Administrator’s
Guide 10g Release 1 (10.1)”, Retrieved on Apr. 26, 2007, reference
No. XP002431369, [Online]. Retreived from the Internet: <URL:
http://download-west.oracle.com/docs/cd/B19306__01/network.
102/b14212 pdf>, (Oct. 2005), 1-29.

Potanin, Alex, et al., “Scale-Free Geometry in OO Programs”,
Communications of the ACM, XP002478203; ISSN: 0001-0782,
(May 2005), 99-103.

Rosenberg, David, “Bringing Java to the Enterprise: Oracle on its
Java Server Strategy”, IEEE Internet Computing IEEE USA, vol. 2,
No. 2, Database accession No. 5902816, XP002431362; ISSN:
1089-7801, (Mar. 2, 1998), 52-59.

Salah, Maher M., “An Environment for Comprehending the Behav-
ior of Software Systems”, Drexel University, XP002477233, (Jun.
2005), 1-158.

Silberschatz, A, et al., “Operating Systems Concepts”, Yale Uni-
versity, (John Wiley & Sons.inc), 7th edition, www.wiley.com/
college/egradeplus, (Dec. 2004), 131,833.

Smith, M. P, et al., “Providing a User Customizable Tool for
Software Visualization at Runtime”, Fourth lasted International
Conference on Visualization, Imaging, and Image Processing Acta
Press, XP002477257, ISBN: 0-88986-454-3, (2004), 135-140.
Smith, M. P, et al,, “Runtime Visualisation of Object Oriented
Software”, Proceedings First International Workshop on Visualising
Software for Understanding and Analysis, XP002477258, ISBN:
0-7695-1662-9, (2002), 81-89.

Smith, Michael P, et al., “Identifying Structural Features of Java
Programs by Analysing the Interaction of Classes at Runtime”, 2005
3rd IEEE International Workshop on Visualizing Software for
Understanding and Analysis (IEEE Cat. No. 05EX1225),
XP002477232, ISBN: 0-7803-9540-9, (2005), 108-113.

Surdeanu, et al., “Design and Performance Analysis of a Distributed
Java Virtual Machine”, Parallel and Distributed Systems, IEEE
Transactions on vol. 13, Issue 6, (Jun. 2002), 611-627.
Tanenbaum, A. S., “Modern Operating Systems”, 2nd Edition,
Upper Saddle River, New Jersey: Prentice-Hall, Inc., English Trans-
lation of Moderne Betriebssysteme, vol. 2, pp. 539-617, (2002)
XP002385695, (2001), 531-578.

Tuttle, Steven, et al., “Understanding LDAP Design and Implemen-
tation”, IBM.com Redbooks, (Jun. 2004), 1-774.

Vandermeer, et al., “ReDAL: Request Distribution for the Applica-
tion Layer”, Distributed Computing Systems, (Jun. 6, 2005), 717-
726.

Veldema, et al., “Runtime Optimizations for a Java DSM Imple-
mentation”, Proceedings of the 2001 Joint ACM-ISCOPE confer-
ence on Java Grande, [online] [retrieved on Jun. 28, 2007] Retrieved
from the Internet <URL:http://delivery.acm.org/10.1145/380000/
376842/p153-veldema.pdf?key1=376842&key2=2893403811
&coll=GUIDE&dI=GUIDE&CFID=26913973
&CFTOKEN=12550.

Wang, Ben, “Enter the JBoss Matrix”, JBossCache 1.0 Released
[online] [retrieved on Oct. 24, 2008], Retrieved from the Internet
<URL:http://blogs.jboss.com/blog/nfleury/2004/03/25/
JBossCache+1.0+Released . html>, (Mar. 25, 2004).

Wolf, Martin, “Administration of the SAP Web Application Server”,
Seminar System Modeling 2005 Hasso-Plattner-Institute for Soft-
ware Systems Engineering, (2005), 8 pgs.

Yue, K. K., et al., “An Effective Processor Allocation Strategy for
Multiprogrammed Shared-Memory Multiprocessors”, IEEE 8(12),
(1997), 1246-1258.

US 9,432,240 B2
Page 9

(56) References Cited
OTHER PUBLICATIONS

Zimmermann, Thomas, et al., “Visualizing Memory Graphs”,
Springer-Verlag Berlin Heidelberg; S. Diehl (Ed): Software Visu-
alization,, XP002478204, LNCS 2269, (2002), 191-204.

“U.S. Appl. No. 11/118,019, Appeal Decision mailed Feb. 18,
20147, 12 pgs.

“U.S. Appl. No. 11/118,020, Appeal Decision mailed Feb. 27,
2014, 8 pgs.

“U.S. Appl. No. 11/118,890, Notice of Allowance mailed Feb. 12,
2014, 5 pgs.

“U.S. Appl. No. 11/118,890, Supplemental Amendment filed Sep.
27, 2013”, 4 pgs.

“U.S. Appl. No. 13/483,848, Examiner Interview Summary mailed
Mar. 12, 2014, 3 pgs.

“U.S. Appl. No. 13/483,848, Non Final Office Action mailed Nov.
22, 20137, 13 pgs.

“U.S. Appl. No. 13/483,848, Notice of Allowance mailed Apr. 11,
20147, 5 pgs.

“U.S. Appl. No. 13/483,848, Response filed Mar. 11, 2014 to Non
Final Office Action mailed Nov. 22, 2013”, 10 pgs.

* cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 18 US 9,432,240 B2

/.\(““*;f%l

{
cuent |/ NETWORK \\ SERVER
161 “*“"\ Yf"“‘“"" 188
U J
AN e
FG. 1
{PFRIOR ART)
| COMPUTING
SYSTEM
200
MEMORY

2318

}/\EX?&RN{ﬁ

i DATABASE
D8

{
i\\sa
ﬂ,,/
‘M_,M

HG. 2

(PRIOR ART)

U.S. Patent Aug. 30, 2016 Sheet 2 of 18
SESSION PERBISTENT
MANAGEMENT STORAGE
301 32
-\'*N\' AT .‘/J?
/f/,,\w—"“"“"‘\~\ P o "\\\\\
7
g
{
§
i“jj
~
...»»-“‘f

HG. 3

{PRIOR ART)

US 9,432,240 B2

U.S. Patent Aug. 30, 2016 Sheet 3 of 18 US 9,432,240 B2

SESSION CONTEXT 404

403
{/ RCOT 0~
SESSION
DOMAIN /
..m*"

o

;

4044

/ ’L\\/ -
SESHION < SESSION
S

484y

{ DOMAINY DOMAIN Y
(4074 407 4084 $087

L OO m{:)fs C?C} Q
4072 S 4083 /

-

4084 \ 406y

gy § o

—

SESHION MANAGEMENT 416

ﬂ”"’“\ .,«f"’L ™

B
. I
é APPLICATION | 3 é APPLICATION K
by aitg
\ X, 5
COMPUTING -
SYSTEM T
400

U.S. Patent Aug. 30,2016

SESSION
DOMAIN_1
8044

Sheet 4 of 18

.-"M

y""
S SESSION PERSISTENY

STORAGE INTERRALE 1

L/ 510¢ oy
{:@\\/\f 507y S
) § ’MN\ $ ZZ“w:nwmwv

1
¢
z
b FILE SYSTEM
3
£
3
£

i =1 PLUG IN
\ 507 : -
L_ D I I 1
N
209y ///
ESSION ;
DOMAIN_Y :
o8y
\‘j‘/f’/ N
Va SESSION PERSISTENT
Sty STORAGE INTERPACE Y
{ ¢ Bty -
Y £ i 1\.““
g:éi:xf L5834
7 O WQ iﬁ...,,m
{ , 508, ;
. P t DATABASE
Q L PLUGIN
! H
N : §
508 : Lo
e 1L e B
Ad
508y .
.a*'f‘/

US 9,432,240 B2

SYSTEM

US 9,432,240 B2

Sheet 5 of 18

Aug. 30, 2016

U.S. Patent

gl e
$1757] SLAIBONOSES -
: Pig
” 8IS \
AN b s
028 L MR w /
- N
FNBIMLLY b C 1o 058)
\&..s.!b,ff#a)l..:},\ - by
Ggg ¢ Tigy T m
£ ,,.)} . 3
cungELvTl Ppeg” e m
P SR :.2.5.}?31. N.N»Mm‘.w erf.:.t)e W
T N] ME e el RRLTO M
o .. oy - . -~ x\;. . - zw - w
bi5o did | Tl : M
i3 L0 NOBES TR N e w
e H
TR s AT DOV A L
o775 L MDD NS , > RS
£ : {43
TNETIG) e mMu,
75 L0 NOISSIS \ o)
719 R >, g m 9
WALSAS 314 523 LAY N FONILNG IOVHOLS y AWAQ
pog 7 e LNELSISHAA NOISEIS \
NIPIOG NOISSHS 818

US 9,432,240 B2

Sheet 6 of 18

Aug. 30, 2016

U.S. Patent

S84

cu1 o
> .
e e
PR
e
: g ol nomsss
ainanLly] BinsLYEINENLLY 538 |
f-lw f)‘v
£a4 574

Pii
3EyEYLYa

Lo

324
i wmﬁ&

L.

i

Sppy

i

{

§

H

H

don m

m ¢

e | M

Bk ot o " s.;m
M.Ww\.h wﬂ c.\

% '

S
i 5k
™, 814
, JOHNALNI 30VE0LE
e INLGISYIS NOIBST

.vm.r e,

NIYIAGO NOISS3S

{1y MO

8 Ol

US 9,432,240 B2

Sheet 7 of 18

Aug. 30, 2016

HOAHOWIW a0 £ ANO MR TED bAHOWHN W01
TIR N IHMOVI TYlisA TT7 2 3NIHOYIN TYNLMIA 1T ANIHOVIE TYNLHIA
\\..“:/.wf \.&M.ffw »\\M‘/ﬁ *9 s
AN EAY R M
M m/ w M/ -
= 7 ~ ; d
[y -
G O
I A VI

-
o~
f“'ﬂwﬂ
RV
-~
-
\"*N-«,

009 WELSAS DNILNGWOD

U.S. Patent

US 9,432,240 B2

Sheet 8 of 18

Aug. 30, 2016

U.S. Patent

6 9id

. JEOAW
® GRUYHE
G i o
WANONS Y 2 RHO WA VT AHOWEY
T W0 WO
ES 4 &

W WANIHOYIN TYNLHIA

CEZ ZTANIHOYI WNLIA

2T LTANIHOYIN WOLHIA

A

-
\/

7en

R o
j;,»

*--9'%

fm

'\
¢
74

U8 WRLSAS DNILNJWOS

H
H
H

A

US 9,432,240 B2

Sheet 9 of 18

Aug. 30, 2016

U.S. Patent

0L 94

ol
ABOYEY (ERIYHS

/ ol

BT)
FHNG0TD GRIVHS VIHILEO INBWIOYNY zomwwwm.\

N,\a?imlw \)V .w,zmo A‘ i;ﬁ

s

210}
AHOYEN T

AY
Y
%
b

B2

, .{,i f:e!.z ././..! ..rfe
/ ANIYIOQ HOISSES \ N NIVAOO MO

bioni
NOLLYWHON
31VLS NOISSTS
LROISSER
.-f.(}.(..}.
N T Zi001
™~ 500 T N IR0
NOULVANOINL e
3IYLE NOISEES

& NOISEES

ERdeis o CEDIPHS v
AN [. &\\ N
m...?@ﬁ } /./ .w mm £ Wiz.....i{ ~.,
NIYIOO S
m NOISSAS |
L EdvHE
mmmf Tyt 70T
¢ LYBINOD NDISSES
* A
. W

U.S. Patent Aug. 30,2016 Sheet 10 of 18 US 9,432,240 B2

USER D&TA
SESSION STATE INFORMATION
07

7

o

P,
/ CATTRIBUTE 1 \

i e’ 1104
{f

%?i{%%%ﬁ B0, } FIG. 11A

A?*Rsamﬁ “;}v 10 j

SESSION MANAGEMENT

\ CRITERIA SHARED
CLOSURE
e, 1109
Pt e
7 \\
e 1121 1121 1423
e"“l‘ N é- 5
/ ¢ ¢
1120 s T TERPIRATION T e
SERRION g SESSION D e AVATLABILITY
MANAGEMENT/
TABLE

SESSION MANAGEMENT CRITERIA /

1124 /

e
S I

"~
e SOV

FIG. 118

U.S. Patent

Aug. 30,2016 Sheet 11 of 18

COPY BESSION MANAGEMENT TABLE j- 207
TOLOCAL MEMORY
DETERMINE 122
SESSION AVAILABILITY

A3

{SESSION AVAILABLE}

COPY NEEDED ATTRIBUTE(S)
FROM LOCAL MEMORY

1203
RN

»

« WRITE ATTRIBUTE MODIFICATION(S}
INTO SHARED MEMORY

« WRITE UPDATED SERBION
MANAGEMENT TABLE INTO
SHARED MEMORY

1304
'

FG. 12

US 9,432,240 B2

U.S. Patent

Aug. 30,2016 Sheet 12 of 18

COPY SESSION MANAGEMENT
TABLE TOLOCAL -
MERMORY

1301
™.

L4

ADD NEW SESSION ENTRY
TG SESSION MANAGEMENT TABLE

1302

l

» WRITE ATIRIBUTE FOR NEW
SESSION INTO SHARED MEMORY

* WRITE UPDATED SESSION
MANAGEMENT TABLE INTO
SHARED MEMORY

1303
N\

FG. 13

US 9,432,240 B2

U.S. Patent

Aug. 30, 2016 Sheet 13 of 18

COPY BESBION MANAGEMENT 140
TABLE TOLOCAL !
MEMORY
k-4
DELETE SESSION ENTRY FROM ”\1}32

SESSION MANAGEMENT TABLE

¥

» DELETE SESSION ATTRIBUTES 1403
FROM SHARED MEMORY

s WRITE UPDATED SESSION
MANAGEMENT TABLEINTO
SHARED MEMORY

FIG. 14

US 9,432,240 B2

U.S. Patent

Aug. 30,2016 Sheet 14 of 18

COPY BESSION MANAGEMENT
TABLE TOLOOAL MEMORY

1501
S

&

FOR EACH SESSION, COMPARE
THE PRESENT TIME AGAINST THE
EXPIRATION TIME

1502

i

DELETE FROM THE SESSION
MANAGEMENT TABLE THOSE
SESSIONS WHOSE EXPIRATION TIME
IS EARLIER THAN THE PRESENT TIME

RS

i

WRITE UPDATED SESSION
MANAGEMENT TABLE INTG
SHARED MEMORY

1504
Y

FIG. 15

US 9,432,240 B2

U.S. Patent

Aug. 30, 2016 Sheet 15 of 18

FAILIVER» B
——— M""
L oisame]
Lo FREQUENCY 1802
A
¢ ; ey 87
L ON_REQUEST. |
:3 1803

b O ATTRIBUTE [T %

L SCOPE 1604

Lo wstance wine_ [} «
1605

b CLUSTER_WIDE_[1 &

FIG. 16

US 9,432,240 B2

1500

U.S. Patent

Aug. 30, 2016

Sheet 16 of 18

COMPUTING
SYSTEM 1
18y

DISPATCHER

COMPUTING
QYSTEM 2 &

02
’i?wg

COMPUTING
SYSTEM 3
17023

COMPUTING
JYITEM F
1102p

FG 17

{PRIOR ART)

US 9,432,240 B2

U.S. Patent Aug. 30, 2016 Sheet 17 of 18 US 9,432,240 B2

DEFINE APPLICATION'S PERSISTERCE 180
STRATEGY AND CREATE DEPLOYMENT Sl
RESCRIPTAR
3
READ DEPLOYMENT DESCRIFPTOR
AND GREATE SESSION DORAWN 1882
FOR THE APPLICATION N

7 SHARED
MEMORY e ‘

~, SYSTEM? |
1804 l 1803

o 7 ST ausTER mstance o N CLUSTER

WibE | f‘f‘ﬁ’xim‘v‘&ﬁ

R ool 4 -8
CREATE IMTERNAL CREATE EXTERNAL CREATE EXTERNAL
RLE BYQTER DATABASE * HARNDLED DATABASE
PERSISTENT FERSISTENT 8Y BHARED PERSISTENT
STORAGE STORAGE MEMORY® STORAGE
INTERFALE INTERFACE INTERFACE
5) b N
1886 1887 1838 1808

FG. 18

U.S. Patent Aug. 30,2016 Sheet 18 of 18 US 9,432,240 B2

{ACHE
1204
PROCESSOR(S)
GRAPHICS SYSTEM
mﬁs&gw et} PROCESS R bt ??2 el MEMORY
1807 1806 1402 1843

M
1805
/‘ﬁ L.
i
s/z
19084 1808, 1808y

FIG. 19

US 9,432,240 B2

1
FLEXIBLE FAILOVER CONFIGURATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 11/117,851 filed Apr. 29, 2005, which application is
incorporated in its entirety herein by reference.

FIELD OF INVENTION

The field of the invention relates to the software arts; and,
more specifically, a Flexible Failover Configuration.

BACKGROUND

Sessions and Information

A “session” can be viewed as the back and forth com-
munication over a network between a pair of computing
systems. Referring to FIG. 1, in the case of a client/server
architecture, basic back and forth communication involves a
client 101 sending a server 100 a “request” that the server
100 interprets into some action to be performed by the server
100. The server 100 then performs the action and if appro-
priate returns a “response” to the client 101 (e.g., a result of
the action). Often, a session will involve multiple, perhaps
many, requests and responses. A single session through one
or more of its requests may invoke the use of different
application software programs.

An aspect of session management is the use of session
state information over the course of a session’s end-to-end
lifetime. Session state information is a record of the status
and/or use of a session. For example, as part of a server’s
response process, the server may save in the session state
information a time in the future at which the session is to be
deemed “expired” if a next request is not received by the
server for that session beforehand. Session state information
may also include information used to “pick-up” a session
from where it last “left-off” (such as the latest understood
state of a client’s web browser), and/or, data or other
information sent to the user over the course of the session
(such as one or more graphics or animation files whose
content is presented to the client as part of the client’s
session experience)

Persistence

In the software arts, “persistence” is a term related to the
saving of information. Generally, persisted information is
saved in such a fashion such that, even if the entity that most
recently used and saved the information suffers a crash, the
information is not lost and can be retrieved at a later time
despite the occurrence of the crash. For example, if a first
virtual machine suffers a crash after using and saving
information to persistent storage, a second virtual machine
may, subsequent to the crash, gain access to and use the
persistently saved information.

FIG. 2 provides a simple example of the concept of
“persistence” as viewed from the perspective of a single
computing system 200. Note that the computing system 200
of FIG. 2 includes DRAM based system memory 210 and a
file system 220 (noting that a file system is typically imple-
mented with one or more internal hard disk drives, external
RAID system and/or internal or external tape drives). Tra-
ditionally, the system memory 210 is deemed “volatile”
while the file system 220 is deemed “non-volatile”. A
volatile storage medium is a storage medium that loses its
stored data if it ceases to receive electrical power. A non

10

15

30

40

45

50

55

2

volatile storage medium is a storage medium that is able to
retain its stored data even if it ceases to receive electrical
power.

Because a file system 220 is generally deemed non-
volatile while a system memory 210 is deemed volatile,
from the perspective of the data that is used by computing
system and for those “crashes” of the computing system
effected by a power outage, the file system 220 may be
regarded as an acceptable form of persistent storage while
the system memory 210 is not. Here, if the computing
system saves a first item of data to the system memory 210
and a second item of data to the file system 220 and then
subsequently crashes from a power outage, the second item
of data can be recovered after the crash while the first item
of data cannot. File systems can be internal or external (the
later often being referred to as “file sharing” because more
than one computing system may access an external file
system).

Another form of acceptable persistence storage relative to
computing system 200 is an external database 230. A
database 230 is most often implemented with a computing
system having “database software”. Database software is a
form of application software that not only permits data to be
stored and retrieved but also assists in the organization of the
stored data (typically in a tabular form from the perspective
of a user of the database software). Traditionally, database
software have been designed to respond to commands
written in a structure query language (SQL) or SQL-like
format. Here, referring back to FIG. 2, if the computing
system stores an item of data in the external database and
then subsequently crashes, the item of data can still be
accessed from the external database.

External databases are particularly useful where informa-
tion is to be made accessible to more than one computing
system. For example, if the external database 230 is
designed to hold the HTML file for a popular web page, and
if the depicted computing system 200 is just one of many
other computing systems (not shown in FIG. 2) that are
configured to engage in communicative sessions with vari-
ous clients, each of these computing systems can easily
engage is sessions utilizing the popular web page simply by
being communicatively coupled to the database. External
file systems also exist.

Persistence of Session State Information

FIG. 3 shows that session management 301 and persis-
tence 302 functions may overlap. Notably, the persistence of
a session’s session state information permits the possibility
of a session to be successfully continued even if an entity
that was handling the session crashes. For example, if a first
virtual machine assigned to handle a session crashes after
the virtual machine both responds to the session’s most
recent client request and persists the corresponding state
information, upon the reception of the next client request for
the session, a second virtual machine may seamlessly handle
the new request (from the perspective of the client) by
accessing the persisted session state information. That is, the
second virtual machine is able to continue the session
“mid-stream” because the session’s state information was
persisted.

FIGURES

The present invention is illustrated by way of example,
and not limitation, in the figures of the accompanying
drawings in which like references indicate similar elements
and in which:

US 9,432,240 B2

3

FIG. 1 (prior art) shows a network between a client and
a server;

FIG. 2 (prior art) shows a computing system having
internal memory and internal file system coupled to an
external database;

FIG. 3 shows that session management and persistence
functions may overlap;

FIG. 4 shows a hierarchical organization of session
domains;

FIG. 5 shows file system persistent storage interface and
an external database persistent storage plug-in;

FIG. 6 shows an embodiment of the organization of a file
system accessed through a file system persistent storage
interface;

FIG. 7 shows an embodiment of the organization of a
database accessed through a database persistent storage
interface;

FIG. 8 (prior art) shows a prior art computing system;

FIG. 9 shows an improved computing system that
employs a shared memory that stores shared closures;

FIG. 10 shows a shared session context within a shared
memory;

FIG. 11a shows an embodiment of a session state shared
closure;

FIG. 115 shows an embodiment of a session management
criteria shared closure;

FIG. 12 shows a process for accessing session state
attributes from shared memory;

FIG. 13 shows a process for adding a session to a session
management table stored in shared memory;

FIG. 14 shows a process for deleting a session from a
session management table stored in shared memory;

FIG. 15 shows a process for deleting expired sessions
from a session management table stored in shared memory;

FIG. 16 shows a deployment descriptor for specifying a
particular session management persistence strategy;

FIG. 17 (prior art) shows a cluster of computing systems;

FIG. 18 shows a process for deploying applications
according to a particular session management persistence
strategy,

FIG. 19 shows an embodiment of a computing system’s
hardware design.

SUMMARY

A method is described that involves offering a user
different persistent scope choice including: a) internal to a
computing system that the deployment descriptor is to be
sent to; and, b) external to the computing system that the
deployment descriptor is to be sent to. The method also
involves offering a user different persistence frequency
choices including: a) persisting per request; and, b) persist-
ing per session state information attribute change. The
method also involves generating a deployment descriptor
that reflects the user’s choice of the persistence scope and
persistence frequency.

DETAILED DESCRIPTION
1.0 In-Memory Session Domains

According to an object oriented implementation, state
information for a particular session may be stored in a
“session” object. In the context of a request/response cycle
(e.g., an HTTP request/response cycle performed by a server
in a client/server session), the receipt of a new request for a
particular session causes the session’s session object to be:

5

10

15

20

25

30

35

40

45

50

55

60

4

1) retrieved from some form of storage; 2) updated to reflect
the processing of the response to the request; and, 3)
re-stored so that it can be retrieved for the processing of the
next request for the session. Here, a session object may be
created by the server for each session that the server recog-
nizes itself as being actively engaged in. Thus, for example,
upon the receipt of a first request for a new session, the
server will create a new session object for that session and,
over the course of the session’s lifetime, the server can
retrieve, update and re-store the session object (e.g., for
reach request/response cycle if necessary).

The server may be a Java 2 Enterprise Edition (“J2EE”)
server node which support Enterprise Java Bean (“EJB”)
components and EJB containers (at the business layer) and
Servlets and Java Server Pages (“JSP”) (at the presentation
layer). Of course, other embodiments may be implemented
in the context of various different software platforms includ-
ing, by way of example, Microsoft .NET, Microsoft Trans-
action Server (MTS), the Advanced Business Application
Programming (“ABAP”) platforms developed by SAP AG
and comparable platforms. For simplicity, because a server
is a specific type of computing system, the term “computing
system” will be largely used throughout the present discus-
sion. It is expected however that many practical applications
of the teachings provided herein are especially applicable to
servers.

At any given time, a computing system may be engaged
in a large number of active sessions. As such, in the simple
case where a session object exists for each session that the
computing system is actively engaged in, the computing
system will have to manage and oversee the storage of a
large number of session objects. FIG. 4 shows a session
management layer 410 that is designed to store session state
data according to a hierarchical scheme 402. According to a
basic approach, session objects that are to be treated accord-
ing to a same set of session management criteria are stored
within a same region of the hierarchy.

Thus, for example, as depicted in FIG. 4, each of the S
sessions associated with session objects 407, through 407
will be treated according to a first set of session management
criteria because their corresponding sessions objects 407,
through 407 are stored in session domain 1 404,; and, each
of the T sessions associated with session objects 408,
through 408, will be treated according to a second set of
session management criteria because their corresponding
sessions objects 407, through 408, are stored in a session
domain 2 404,. In an implementation, each session domain
is accessed through reference to a specific region of memory
(e.g., through a hashtable that maps keys to values).

Here, again according to a basic approach, the treatment
applied to the S sessions will be different than the treatment
applied to the T sessions because their respective session
objects are stored in different storage domains 404,, 404,
(because different session domains correspond to unique
combinations of session management criteria). Session man-
agement criteria generally includes one or more parameters
that define (or at least help to define) how a session is to be
managed such as: 1) the session’s maximum inactive time
interval (e.g., the maximum amount of time that may elapse
between the arrival of a request and the arrival of a next
request for a particular session without that session being
declared “expired” for lack of activity); 2) the maximum
number of outstanding requests that may be entertained by
the computing system for the session at any one time; 3) the
session’s access policy (which indicates whether the session
can be accessed by multiple threads (i.e., is multi-threaded)
or can only be accessed by a single thread); 4) the session’s

US 9,432,240 B2

5

invalidation policy (e.g., whether or not the session object
for an inactivated session is persisted or not); and, 5) the type
of persistent storage to be used.

According to one approach, one or more session manage-
ment criteria items for a particular session domain (such as
any combination of those described just above) is stored
within the session domain separately from the one or more
session objects that are stored within the same session
domain. Such an approach may improve efficiency because,
at an extreme, the session objects need not carry any session
management criteria information and may instead carry only
pure session state information (e.g., the expiration time of
the session, the most recent understood state of the client’s
web browser, etc.).

In the case of an application server computing system,
clients engage in sessions with the computing system so that
they can use application software located on the computing
system. The application software (including any “pages”
such as those from which the execution of a specific soft-
ware routine may be triggered) may be run on the computing
system and/or downloaded to and run on the client. In an
approach that may be alternate to or combined with the basic
embodiment described just above in which session domains
are reserved for unique combinations of session manage-
ment criteria, session domains may be established on a “per
application” basis. That is, a first session domain may be
established in the hierarchy for a first application, and, a
second session domain may be established in the hierarchy
for a second application. In an alternate or combined imple-
mentation, entire hierarchy trees (each having its own root
node 403) are instantiated on a “per application” basis.

Depending on implementation preference, different appli-
cations having identical session management treatment poli-
cies may have their session objects stored in the same
session domain or in different session domains. Moreover,
again according to implementation preference, a single
session domain may be created for the session objects of
sessions that deserve “related” rather than “identical” ses-
sion management treatment (e.g., for a particular session
domain, some but not all session management criteria char-
acteristics are identical; and/or, a range of possible criteria
values is established for a particular session domain such as
sessions having a maximum inactive time interval within a
particular time range).

The storage hierarchy may also include the notion of
parent and children nodes. In one configuration, a child node
has the same lifecycle as its parent node. Thus, if the parent
domain is destroyed all of its children nodes are destroyed.
The domain hierarchy provides different space for the ses-
sions (session domains) grouping it in logical structure
similar to the grouping files to the folders. According to an
implementation, the root 403 is used to provide high-level
management of the entire hierarchy tree rather than to store
session information. For example, if an application consists
of many Enterprise Java Bean (EJB) sub applications you
should be able to manage the sessions of different EJB
components separately. As such, isolation between different
EJB sub-applications is achieved by instantiating different
session domains for different EJB components, while at the
same time, there should exist the ability to manage the entire
application as a whole.

For example, to remove all sessions of an application after
removal of the whole application. Grouping the sessions in
tree structure (where the root presents the application and
the various children present the different ejb’s) you can
easily destroy all the sessions after removing the application
simply by destroying the root.

30

40

45

55

6

The nomenclature of session domains 404, through 404,
is meant to convey that a wide range of different session
domains (at least Y of them) may be established for a
particular “context”. Different hierarchy “contexts” 402,
402,, . . . 402, are depicted in FIG. 4. The processing of a
complete request/response often involves the processing of
different active segments of code within the computing
system. For example, a first segment of code may setup and
teardown the specific “ports” through which a session’s data
flows in and out of the computing system, a second segment
of code may handle the protocol between the client and
computing system (e.g., an HTTP or HTTPS protocol), a
third segment of code may be the actual application software
that is invoked by the client (e.g., specific objects or com-
ponents in an object oriented architecture (such as Enterprise
Java Beans (EJBs) in a Java environment)).

Each of these different segments of code may depend on
their own session state information in order to support the
session over the course of its lifetime. As such, in an
embodiment, different contexts are established, each con-
taining its own hierarchy of session domains, for the differ-
ent segments of code. For example, continuing with the
example provided just above, context 402, may be used to
store client/server protocol session state information, con-
text 402, may be used to store computing system port
session state information, and context 402, may be used to
store EJB session state information. For simplicity the
remainder of the present application will focus largely on
client/server communication protocol session state informa-
tion (e.g., HTTP session state information) that is kept in
object(s) within an object oriented environment.

Referring to FIG. 4, a session management layer 410 is
observed interfacing with the session domain storage hier-
archy 402 to support sessions between one or more clients
and software applications 411, through 411,. According to
one implementation, the session management layer 410
accesses 406, . . ., 406, the information stored in their
respective session domains on behalf of the applications
411, through 411,. Alternatively or in combination, the
applications 411, through 411, may access session domain
information directly.

Typically, the session contexts 402, through 402, and
their associated session domains are essentially “cached” in
the computing system’s volatile semiconductor random
access memory (e.g., within the computing system’s system
memory and/or the computing system’s processors’ caches)
so that rapid accesses 406, through 406, to the session state
and/or session management criteria information can be
made. As alluded to in the background, the cached (“in-
memory”) session state information may be persisted to a
file system or database to prevent service disruption in case
there is some operational failure that causes the cached
session state information to no longer be accessible. More-
over, consistent with classical caching schemes, session
state information that has not been recently used may be
“evicted” to persistent storage to make room in the com-
puting system memory for other, more frequently used
objects. Thus, access to persistent storage for session infor-
mation not only provides a “failover” mechanism for recov-
ering from some type of operational crash, but also, provides
a deeper storage reserve for relatively infrequently used
session information so as to permit the computing system as
a whole to operate more efficiently.

2.0 File System and Database Persistent Storage
Interfaces

The session management layer 410 is responsible for
managing the persistence of session objects consistently

US 9,432,240 B2

7

with the session management criteria that is defined for their
respective session domains. Because of the different types of
file systems that may exist, the syntax and/or command
structure used to store and/or retrieve information to/from a
particular file system may differ from that of another file
system. Moreover, the types of activities that are performed
on a file system with persisted information (most notably the
storing and retrieving of persisted information) tend to be
the same regardless of the actual type of file system that is
implemented. That is, the high level operations performed
on a file system with persisted information generally are
independent of any particular file system.

In order to enable the straightforward configuration of a
particular session domain whose content is to be persisted
into a specific type of file system, some kind of easily
configurable translation layer is needed whose functional
role, after its instantiation and integration into the deployed
software platform as a whole, is to interface between a set
of high level persistence related commands and a specific
type of file system. By so doing, source code level devel-
opers can develop the session management layer 410 and/or
applications 411, through 411, that invoke persisted infor-
mation be referring only to a high level command set.

Upon actual deployment of the executable versions of the
source code, which approximately corresponds to the time at
which the actual file system to be used for persistence is
actually identifiable, the translation layer is instantiated to
translate between these high level commands and the spe-
cific syntax and/or command set of the particular type of file
system that is to be used to persist the data. According to one
implementation, a unique block of translation layer code is
instantiated for each session domain (i.e., each session
domain is configured to have “its own” translation layer
code). According to another implementation, a unique block
of translation layer code is instantiated for each file system
(i.e., each file system is configured to have “its own”
translation layer code).

During actual runtime, in order to store/retrieve persisted
information, the session management layer 410 and/or cer-
tain applications essentially “call on” a translation layer
(through the high level command set) and use it as an
interface to the translation layer’s corresponding file system.
For clarity, a translation layer as described just above will be
referred to by the term “session persistence storage inter-
face” or simply “persistence storage interface” or “persis-
tence interface”.

FIG. 5 shows persistence storage interface models for a
file system and for an external database. Specifically, per-
sistence storage interface 510, is depicted as being an
interface to a file system 513; and, persistence storage
interface 510, is depicted as being an interface to external
database 514. Persistence storage interface 510, is depicted
as being the persistence interface between cached session
domain 504, and file system 513. Persistence storage inter-
face 510, is depicted as being the persistence interface
between cached session domain 504, and external database
514. Here, note the similarity in nomenclature between
FIGS. 4 and 5 with regard to session domains 404, ; and
504, ; suggesting that session domain 404, of FIG. 4 could
be configured to use file system 510, as its persistent storage
medium, and, that session domain 404 of FIG. 4 could be
configured to use database 514 as its persistence storage
medium.

Activities 506, and 506 ,-are meant to depict any activities
stemming from the session management layer and/or any
applications that are imparted upon session objects 507,
through 507 and 508, through 508, respectively, and/or

10

15

20

25

30

35

40

45

50

55

60

65

8

upon their respective session domains 504, 504, as a whole.
As described above, these activities 506, 506, may involve
method calls to the respective persistence storage interfaces
510,, 510,. Here, activities 509, and 509, are meant to
depict the transfer of session state information between the
cached session domain 504,, 504, and the corresponding
persistence storage medium 513, 514.

Notably, the depicted persistence interface models 510,
510, use a “plug-in” architecture. A “plug-in” is a pre-
existing segment of code that is not integrated into a larger
software system, ultimately as a working component of the
larger software system, unless an affirmative command to
integrate the plug-in into the larger system is made. Accord-
ing to an implementation, a separate plug-in exists for
different types of persistence storage implementations that
may exist. For example, currently, there are different types
of file systems and databases available on the open market
that a “user” of the software may choose to use for persis-
tence purposes.

In the case of databases, different database software
vendors presently exist such as Oracle, IBM and Microsoft.
Each of these different vendors tend to have an SQL based
command language (e.g., insert). Often times, different
command statements are needed to perform identical opera-
tions across different database software implementations.
Therefore, according to the approach of FIG. 5, a separate
database plug-in 512 is written for the various types of
“supported” persistence database solutions that an ultimate
end user of the computing system’s application software
may choose to implement. For example, a first plug-in may
exist for database software offered by Oracle (e.g., Oracle
Database based products), a second plug-in may exist for
database software offered by IBM (e.g., IBM DB2), and, a
third plug-in may exist for database software offered by
Microsoft (e.g., Microsoft SQL Server based products).

According to an approach, upon deployment of software
to a particular computing system and surrounding infrastruc-
ture (i.e., when a particular type of database software being
used for persistence is actually known), the plug-in 512 for
a particular type of database software is integrated into the
computing system’s software. According to a further
embodiment, a separate database software plug-in is
“plugged in” (i.e., integrated into the computing system’s
software) for each session domain having persistence to a
database. Here, if different session domains are configured
to persistent to a same database, some queuing space may
need to be implemented between the session domains’
plug-ins and the database in order to handle quasi-simulta-
neous persistence operations made to the database from
different session domains.

According to an alternate embodiment, a separate data-
base plug-in is “plugged in” for each different database that
is used for persistence (i.e., the persistence functions for
different session domains that use the same database flow
through the same plug-in). According to this implementa-
tion, some queuing space may need to be implemented
between the plug-in for a particular database and the differ-
ent session domains that persist to that database in order to
handle quasi-simultaneous persistence operations made to
the database.

According to another alternate embodiment, a separate
database plug-in is “plugged in” for each different type of
database that is used for persistence (i.e., the persistence
functions for different session domains that use the same
database command language (but perhaps different actual
database instances) flow through the same plug-in). Accord-
ing to this implementation, some queuing space may need to

US 9,432,240 B2

9

be implemented between the plug-in for a particular data-
base type and the different session domains that persist to
that database type in order to handle quasi-simultaneous
persistence operations made to the same type database.
Moreover, additional queuing space may need to be imple-
mented between the plug-in for a particular database type
and the different actual instances of that database type that
the session data is actually persisted to.

According to the approach of FIG. 5, a separate database
plug-in 511 is written for the various types of “supported”
file systems that a customer of the software may choose to
persist to. Upon deployment of the software to a particular
platform (again, when the particular type(s) of file system(s)
being used for persistence is actually known), the plug-in
511 for a particular file system is integrated into the soft-
ware. Consistent with the principles outline just above, file
system plug-ins may be “plugged in” on a per session
domain basis, a per file system basis, or, a per file system
type basis. Separate plug-ins may be written for each of
various vendor-specific or open sourced file systems.

According to an embodiment, each plug-in essentially
serves as a translator that translates between a generic
command set and the command set particular to a specific
type of persistence. According to one implementation, the
generic command set is not specific to any particular per-
sistence type. Referring briefly back to FIG. 4, by designing
the persistence commands called out by the session man-
agement layer 410 and/or applications 411, through 411,
with the generic command set, after deployment and during
runtime, the plug-in for a particular type of persistence will
translate the generic commands from the session manage-
ment and/or an applications into commands that are specific
to the particular type of persistence that has been imple-
mented (e.g., a particular type of file system or database). As
such, ideally, the source code designers of the session
management function and/or applications need not concern
themselves with particular types of persistence or their
corresponding command languages.

2.1 Embodiment of File System Persistent Storage
Interface

FIGS. 6 and 7 depict additional details about a persistent
storage interface for a file system and database, respectively.
Referring firstly to FIG. 6, activity 616 represents the
activity that may be imposed upon the memory based
session domain 604 by a session management layer and/or
one or more applications; and, activity 626 represents the
activity that may be imposed upon a specific session object
(in particular, session object 607,) by a session management
layer and one/or more applications. Here, because session
domain 604 is configured to be “backed up” by persistent
storage 613, note that, from a communicative flow perspec-
tive, a session persistent storage interface 610 containing
plug-in code 611 resides between the session objects 607,
through 607 and the file system persistence storage 613.

As described above with respect to FIG. 5, the persistence
interface 610 comprehends a generic command set that the
plug-in 611 is able to convert into commands that are
specific to the particular type of file system that persistence
storage 613 corresponds to (e.g., Linux based file systems
(e.g., Ext, Ext2, Ext3), Unix based file systems (e.g., Unix
Filing System (UFS), IBM based file systems (e.g., IBM
Journaled File Systems (JFS), IBM General Parallel File
System (GPFS)), Oracle based file systems (e.g., Oracle
Clustered File System (OCFS), Oracle Real Application
Clusters (RAC), Oracle Automatic Storage Management

10

15

20

25

30

35

40

45

50

55

60

65

10
(OASM)), ReiserFS based files systems, Microsoft based
file systems (e.g., FAT16, FAT32, NTFS, WINFS), etc.).

The application of the generic commands to the persis-
tence storage interface 610 is represented as activity 631.
Here, certain activity 616 applied to the session domain as
a whole, as well as certain activity 626 applied to a specific
session object, will trigger activity 631 at the persistent
storage interface 610 so that the information and/or structure
of the memory based session domain 604 is effectively
duplicated with the persistent storage 613.

According to the perspective of FIG. 6, a “model” of a
session object is persisted within the persistence storage
613. Because the particular persistent storage 613 of FIG. 6
is a file system, and because file systems tend to be orga-
nized through a hierarchy of directories that contain files
having data, the persisted session object “model” of FIG. 6
corresponds to a set of files stored within a directory. As an
illustrative example, FIG. 6 shows an exploded view of the
specific model 650 that has been persisted for session object
607,. Here, a directory 627, has been created for session
object 607, and, the contents of this directory 627, include
separate files 651, through 651, that, when taken together,
correspond to the session information contained by session
object 607, that is persisted by file system 613. Note that
separate directories 627, through 627 have been created for
each of session objects 607, through 607, respectively.

The plug-in 611 is primarily responsible for, in response
to the command activity 631 presented at the persistent
storage interface 610, creating and deleting directories in the
file system 613 and creating, deleting, reading and writing to
files in the file system 613. According to one embodiment,
the persistent storage interface 610 with its plug-in 611
causes the hierarchical structure of the directory that is
persisted in the file system 613 to approximately mirror the
hierarchical structure of the “in-memory” session domain
604. For example, referring to FIGS. 4 and 6, in the simplest
case where the file system 613 is the sole persistence
resource for session contexts 402, through 402, the persis-
tence interface 610 with its plug-in 611 creates a failover
directory 625 in the file system where all persisted session
information is kept. Here, a separate directory is then
established within the failover directory 625 for each session
context 402, through 402, in the session domain (FIG. 6
only shows one such directory 624 which has been created
for session context 624).

Within the directory for a particular context, directories
are created for each session domain within the context. FIG.
6 only shows one such directory 623 created for session
domain 404,, at least Y such directories would be created
within context directory 624. The directory for a particular
session domain, such as directory 623, contains a directory
for each session object that is associated with the session
domain. Thus, as observed in FIG. 6, a separate directory
627, through 627, exists for each of session objects 607,
through 607, respectively. If session domain 404, has any
children session domains (not shown in FIG. 4), directory
627, would contain additional directories for these children
session domains (that, in turn, would contain directories for
their corresponding session objects and children session
domains).

Notably, the various contents of session object 607, are
broken down into separate “attributes”, and, a separate file
is created and stored in directory 627, for each attribute of
session object 607, (or at least those attributes deemed
worthy of persisting). According to the exemplary depiction
of FIG. 6, session object 607, has “J” different attributes that
are persisted through files 651, through 651 ,, respectively.

US 9,432,240 B2

11

An attribute generally corresponds to a specific item of data
that is a component of a session’s session state information.
Generic examples of attributes include and the session’s
sessionlD and expiration time. However, in practice, attri-
butes tend to be specific to the particular information that is
persisted for a particular session. For instance, in the case of
a “session” Enterprise Java Bean (EJB) various “attributes”
of session state information that are specific or unique to the
EIB will be persisted.

According to one embodiment, the following set of
generic commands may be presented at the session persis-
tent storage interface 610 for purposes of managing the
persisted session domain as a whole. Communicative flow
632 is meant to depict this high level management view.
Input arguments for the command methods are presented in
parenthesis.

1. Create_Model (sessionlD). The “Create_Model” com-
mand creates a model for a specific directory in the file
system 613 for a specific session. As described above,
according to one implementation, a unique session object is
created for each unique session. When the computing system
recognizes a new session, a new session object is created for
that session, a session domain for that session object is
identified or created, and, the Create Model command is
called at the persistent storage interface 610 for the session
domain 604. In response to the Create Model command, the
plug-in 611 creates a directory in the file system for the new
session (e.g., directory 627,) within the file system directory
established for the session domain (e.g., directory 623). In
an implementation, the plug-in 611 creates the directory
though a “model” object that represents the new directory
and contains “handlers” to the file system. For example, in
the case of file system persistence, the model object keeps a
reference to the java.ioFileOutputStream which is the object
that provides the physical access to the file system. In one
embodiment, the persistence storage interface 610 creates a
mapping between the session object, the persistence model
object and a specific directory in the file system 613. That is,
in this embodiment a one-to-one correspondence exists
between sessions within the session domain 604 and model
objects managed by the persistent storage interface. As
session data is modified, the mapping ensures that the
session data stored within the file system remains consistent
with the session object (i.e., via the file system handlers).

When a new session is created it is assigned an identifi-
cation code—referred to as the “SessionID”. Here, if per-
session domain persistent storage interfaces are instantiated,
the interface 610 need only be given the SessionID as the
input argument in order to perform the appropriate opera-
tions upon the file system (assuming the interface 610 is
configured to “know” as background information the iden-
tity of the file system it interfaces to as well as the session
domain it services). The remainder of the commands below
are described so as to apply to per-session domain persistent
storage interfaces, but, the arguments given with the com-
mands could be extended to include the identity of the
session domain if persistence storage interfaces are instan-
tiated per file system, or the identity of the session domain
and a specific file system if per-file system type interfaces
are instantiated.

2. Get_Model (sessionID). The “Get Model” command
retrieves the entire persisted content for a session. Thus, for
example, if the GetModel command where executed for the
session for which directory 627, was created, the session
model object of the plug-in 611 would read each of attribute
files 651, through 651, from the file system.

10

25

30

40

45

55

12

3. Remove_Model (model). The “Remove Model” com-
mand essentially deletes the persisted information for a
particular session. For example, if the Remove Model com-
mand were executed for the session for which directory 627,
was created, the session model object of the plug-in 611
would delete directory 627, and all its contents from the
(i.e., attribute files 651, through 651) from the file system.
A Remove Model command is often executed for a session
after the session has been deemed no longer functioning
(e.g., “expired”, “corrupted”, etc.).

4. Iterator. The “Iterator” command is called so that
specific attribute files mapped to model objects can be
fetched from each session directory within the session
domain directory. According to one implementation, in
response to the Iterator command, the interface 610 creates
and returns to the caller of the Iterator command an “Itera-
tor” object. An iterator object, such as Java’s java.util.lter-
ator interface object, is an object having methods to fetch
some or all elements within a collection. Thus, for example,
if the session management layer wanted to view the first
attribute within each of session directories 627, through
62'7, it would first call the Iterator command at the persis-
tence interface 610.

The interface 610 would then return an Iterator object to
the session management layer in response. The session
management layer could then use the Iterator object to fetch
the first attribute within each session directory. According to
one embodiment, the interface 610 creates the iterator object
so that is it executes a sequence of “Get Attribute(s)”
commands at the interface 610 (specifically, one “Get Attri-
bute(s)” command for each session directory within the
session domain directory), where, the desired attribute(s) are
specified by the caller of the “Iterator” command. The Get
Attribute(s) command is described in more detail further
below.

5. Tterator_All_Expired. The “Tterator_All_Expired”
command operates similarly to the Iterator command, except
that the created Iterator object only has visibility into the
session directories of sessions that are deemed expired.
According to an implementation, execution of the Iter-
ate_All_Expired function involves the interface 610 having
to first identify those sessions that are deemed expired and
then having to create an Iterator object whose sequence of
Get Attribute(s) commands only read into those session
directories identified as being expired. In order for the
interface 610 to determine which sessions have expired, the
session domain directory 623 can be configured to include
information sufficient for the determination to be made.

For example, in one embodiment, one of the attributes
within each session object and its corresponding persisted
directory is the time at which the corresponding session is
deemed to be expired. If the plug-in 611 reads this attribute
and the present time is beyond the time recorded in the
attribute, the session is deemed “expired” (accordingly, note
that the plug-in 611 should write the expiration time for a
session into the appropriate attribute of the session’s corre-
sponding session directory each time a new request is
received for the session).

6. Remove_All _Expired. The “Remove_All_Expired”
command is used to delete all session directories from a
session domain directory whose corresponding sessions are
deemed expired. Here, consistent with the discussion pro-
vided just above with respect to the Interator_All_Expired
command, session directories can be identified as being
expired if they are designed to contain an attribute that
identifies them as being expired; or, if the session domain

US 9,432,240 B2

13

directory contains information sufficient for the interface
610 to determine which sessions are expired.

Whereas the above commands provide session domain-
wide management functions for a persisted session domain,
in a further embodiment, the interface 610 and model object
of its plug-in 611 are also written to support the following
command set for managing the information that is persisted
for a particular session (e.g., for managing a particular
model’s information). Each of the commands below can be
assumed to be identified to the interface 610, in some way,
as pertaining to a particular session within the session
domain.

1. Get_Session_ID. Execution of the Get_Session_ID
command causes the plug-in 611 to read the sessionID for
the particular session that the command is called on behalf
of Note that, accordingly, the sessionlD corresponds to
information contained in one of the attributes associated
with a session’s persisted session state information.

2. Get_Expiration_Time. Execution of the Get_Expira-
tion_Time command causes a model object of the plug-in
611 to read the expiration time for the particular session that
the command is called on behalf of Note that, accordingly,
the expiration time corresponds to information contained in
one of the attributes associated with a session’s persisted
session state information.

3. Update_Expiration_Time (maximum inactive time
interval). Execution of the Get_Expiration_Time command
causes the model object within the plug-in 611 to write a
new expiration time for the particular session that the
command is called on behalf of According to one imple-
mentation, as observed above, the maximum inactive time
interval is presented as an input argument for the Update_
Expiration_Time command. Here, the expiration time is
calculated by the interface 610 (or its plug-in 611) simply by
adding the maximum inactive time interval to the present
time.

In an embodiment, even though the maximum inactive
time interval is more properly viewed as session manage-
ment criteria information, the inactive time interval is
“tagged along with” the expiration time or is recognized as
its own separate attribute within the client’s session state
information. Typically, a new expiration time is calculated
with each newly arriving request for a particular session (or,
with each completed request/response cycle for a particular
session).

Note that, according to an implementation, the “present
time” used for calculating the expiration time is taken from
a clock within the computing system. Although not entirely
relevant for internal file systems, using a clock from an
external persistence resource (such as an external database
or RAID system) could cause unequal expiration treatment
across different persistence resources if the clocks from the
different persistence resources do not have identical core
frequencies. Calculating the expiration time from the per-
sistence interface 610 or plug-in 611 keeps the core fre-
quency the same (i.e., a clock within the computing system
is used) across all session irregardless of each session’s
particular persistence resource.

4. Get_Attribute(s) (attribute(s)). Execution of the Get_
Attribute(s) command causes a model object within the
plug-in 611 to read one or more specific attributes identified
by the caller of the command (e.g., the session management
layer or an application). The “attribute(s)” argument iden-
tifies the specific attribute(s) (i.e., specific file(s)) that are to
be retrieved.

In an implementation each one of these attributes (as well
as the sessionlD and expiration time) can be obtained by

10

20

25

30

35

40

45

50

55

60

65

14

explicitly calling for it in the attribute(s) argument of the
Get_Attribute command. Moreover, as part of managing the
visual presentation that is rendered on the client over the
course of the session, the attributes of a session’s session
state information may also include fairly large graphics files.
In this case, the session object is used to implement a kind
of caching scheme for certain visual images that are to be
displayed on the client over the course of the session.

It is in this respect that size management of a session
object and its persisted information may become an issue. If
a session object were to contain a number of such large
graphics files, reading/writing all of its contents to/from
persistence storage 613 as standard persistence accessing
procedure would be inefficient. By granularizing a session
object’s content into smaller attributes, and by making these
attributes separately accessible to/from persistent storage
613, a single large graphics file can be individually read
from persistence storage only if the file is actually needed—
for instance (i.e., large graphics files that are not needed are
not identified in the attribute(s) input argument and remain
in persisted storage).

Perhaps more importantly, if only a relatively small piece
of session state information is actually needed (e.g., just the
expiration time), only that small piece of session state
information can be read from persistent storage (i.e., the
retrieval of un-desired large graphics file is avoided). Hence,
the ability to specifically target only certain portions of a
persisted session object results in more efficient operation as
compared to an environment where only the entire content
of a session object’s contents can be read from or written to
persistence.

Note that, according to an implementation, all attributes
are individually accessible—not just those used for the
storage of graphics files. Here, communicative flows 634,
through 634 ; are meant to convey the individual accessibil-
ity of each of persisted attributes 651, through 651;. In an
implementation alternative to that described above, only a
singleton “attribute” is presented as an input argument and
separate Get Attribute(attribute) commands have to be called
to retrieve more than one attribute.

5. Put_Attribute(s)(attribute(s)). Execution of the Put_At-
tribute(s) command enables the writing of individual attri-
butes into persistent storage via the model object consistent
with the same principles outlined above for the Get_Attrib-
ute(s) command. Notably, in an implementation, execution
of'a Get_Attribute(s) or Put_Attribute(s) command does not
involve serialization of the attribute data. Traditionally,
persisted objects have been serialized (into a “byte array™)
prior to their being persisted so as to enable their transport
across networks and/or enable their reconstruction (through
a process referred to as deserialization) upon being recalled
from persistent storage. Serialization and deserialization can
be an inefficient, however, and accessing the attributes(s) in
a non serialized format should eliminate inefficiencies asso-
ciated with serialization/deserialization processes.

6. Get_Attribute(s)_Serialized(attributes(s)). Execution
of the Get_Attribute(s)_Serialized command is essentially
the same as the Get_Atribute(s) command described above,
except that the persistence storage interface 610 (or model
object within the plug-in 611) performs deserialization on
attribute data read from persistent storage.

7. Put_Attribute(s)_Serialized(attributes(s)). Execution of
the Put_Attribute(s)_Serialized command is essentially the
same as the Put_Atribute(s) command described above,
except that the persistence storage interface 610 (or model
object within the plug-in 611) performs serialization on
attribute data written to persistent storage.

US 9,432,240 B2

15

According to one implementation, session management
criteria information for a particular session domain (e.g.,
maximum inactive time interval, maximum number of out-
standing requests, access policy, etc.) is kept in the in
memory session domain 604 separately from the session
domain’s session objects 607, through 607 (e.g., in another
object not shown in FIG. 6); and, is persisted to a file in the
session domain’s directory 623 (also not shown in FIG. 6)
along with the individual session directories 627, through
627 . Recalling the discussion provided above in Section 1.0
near the onset of the discussion of FIG. 4, separating session
management criteria information from session state infor-
mation keeps the size of the session objects 607, through
607 (and the size of their corresponding persisted directo-
ries 627, through 627;) beneath the size they would other-
wise be if they were designed to include the session man-
agement criteria information themselves.

2.2 Embodiment of Database Persistent Storage
Interface

FIG. 7 depicts additional details about a persistent storage
interface for a database. Similar to FIG. 6, activity 716 of
FIG. 7 represents the activity that may be imposed upon the
memory based session domain 704 by a session manage-
ment layer and/or one or more applications; and, activity 726
represents the activity that may be imposed upon a specific
session object (in particular, session object 708,) by a
session management layer and one/or more applications.
Here, because session domain 704 is configured to be
“backed up” by database 714, note that, from a communi-
cative flow perspective, the persistent storage interface 710
containing plug-in code 711 resides between the session
objects 708, through 708, and the persistence storage 714.

As described above with respect to FIGS. 5 and 6, the
persistence interface 710 comprehends a generic command
set that the plug-in 711 is able to convert into commands that
are specific to the particular type of database that persistence
storage 714 corresponds to. The application of the generic
commands to the persistence storage interface 710 is repre-
sented as activity 731. Here, certain activity 716 applied to
the session domain as a whole, as well as certain activity 726
applied to a specific session object, will trigger activity 731
at the persistent storage interface 610 so that the information
and/or structure of the memory based session domain 704 is
effectively duplicated with the persistent storage 714.

According to the perspective of FIG. 7, a “model” of a
session object is persisted within the persistence storage
714. Because the particular persistent storage 714 of FIG. 7
is a database, and because database data tends to be orga-
nized with a table, the persisted session object “model” of
FIG. 7 corresponds to a row within a table 723 that has been
established for the session domain 704. As an illustrative
example, FIG. 7 shows tables rows 751, 752, . . . 758 as
being the persisted models for session objects 607,
607,, . . . 607, respectively. The different session object
attributes correspond to different columns within the table
723.

For simplicity, the particular table 723 of FIG. 7 is drawn
s0 as to only apply to session domain 704. In an implemen-
tation, table 723 is a segment of a larger table in database
714 whose organization reflects the hierarchy of an entire
session domain context as observed in FIG. 4. For example,
the first table column may be reserved to identify the
context, the second table column may be reserved to identify
the particular session domain within the session context
(e.g., root/session_domain_1), and, the third table column

10

15

20

25

30

35

40

45

50

55

60

65

16

may include the sessionlD (which has been depicted as the
first table column in FIG. 7). A row for a particular session
is therefore accessible by matching on the first three col-
umns in the table.

The plug-in 711 is primarily responsible for, in response
to the command activity 731 presented at the persistent
storage interface 710, creating and deleting rows in the table
723 as well as reading from and writing to the rows in the
table 723. According to a further implementation, a similar
table is created in the database for each in-memory session
domain that is persisted to the database 714.

According to one embodiment, the following set of
generic commands may be presented at the session storage
interface 610 for purposes of managing the persisted session
domain as a whole. Communicative flow 732 is meant to
depict this high level management view. Input arguments for
the command methods are presented in parenthesis. Note
that, consistent with the discussion provided above with
respect to FIG. 5, in order to provide different types of
persistent storage tansparently to higher layers of software
within the computing system (e.g., a session management
layer and/or one or more applications), the command set is
identical to the command set discussed above in FIG. 6 with
respect to file systems. The only difference is the operations
performed by the corresponding plug-ins 611, 711.

1. Create_Model (sessionlD). The “Create_Model” com-
mand creates a row in the database table 723 for a specific
session. As described above, according to one implementa-
tion, a unique session object is created for each unique
session. When the computing system recognizes a new
session, a new session object is created for that session, a
session domain for that session object is identified or cre-
ated, and, the Create Model command is called at the
persistent storage interface 710 for the session domain 704.
In response to the Create Model command, the plug-in 711
(e.g., through a “model” object) creates a row in the table for
the new session. When a new session is created it is assigned
an identification code—referred to as the “SessionID”. In
one embodiment, the persistence storage interface 610 cre-
ates a mapping between the session object, the persistence
model object for that session and a specific row in the
database table 723. That is, in this embodiment a one-to-one
correspondence exists between sessions within the session
domain 604 and model objects managed by the persistent
storage interface 610. As session data is modified, the
mapping ensures that the session data stored within the
database remains consistent with the session object.

Here, if per-session domain persistent storage interfaces
are instantiated, the interface 710 need only be given the
SessionID as the input argument in order to perform the
appropriate operations upon the file system (assuming the
interface 710 is configured to “know” as background infor-
mation the identity of the database it interfaces to as well as
the session domain it services). The remainder of the com-
mands below are described so as to apply to per-session
domain persistent storage interfaces, but, the arguments
given with the commands could be extended to include the
identity of the session domain if persistence storage inter-
faces are instantiated per database, or the identity of the
session domain and a specific database if per-database type
interfaces are instantiated.

2. Get_Model (sessionID). The “Get Model” command
retrieves the entire persisted content for a session. Thus, for
example, if the GetModel command where executed for the
session for which row 751 was created, the model object
within the plug-in 711 would read each of'the J attribute files
in row 751 from the database table 723.

US 9,432,240 B2

17

Remove_Model(model). The “Remove Model” command
essentially deletes the persisted information for a particular
session. For example, if the Remove Model command were
executed for the session for which row 751 was created, the
model object within the plug-in 711 would delete row 751
from the database table 723. A Remove Model command is
often executed for a session after the session has been
deemed no longer functioning (e.g., “expired”, “corrupted”,
etc.).

Iterator. The “Iterator” command returns an “Iterator”
object having visibility into all rows in the database table
723. According to one embodiment, the interface 710 creates
the iterator object so that it executes a sequence of “Get
Attribute(s)” commands at the interface 710 (specifically,
one “Get Attribute(s)” command for each row within the
table 723), where, the desired attribute(s) are specified by
the caller of the “Iterator” command. In this manner, the
same one or more attributes can be retrieved from each row
in the database table 723.

Tterator_All_Expired. The “Iterator_All_Expired” com-
mand operates similarly to the Iterator command, except that
the created Iterator object only has visibility into the session
directories of sessions that are deemed expired. According to
an implementation, the interface 710 first identifies those
sessions that are deemed expired and then creates an Iterator
object whose sequence of Get Attribute(s) commands only
read into those session directories identified as being
expired. In order for the interface 710 to determine which
sessions have expired, the session attributes can be config-
ured to include information sufficient for the determination
to be made.

For example, one of the attributes within each session
object (and corresponding database table column) is the time
at which the corresponding session is deemed to be expired.
Ifthe model object within the plug-in 711 reads this attribute
and the present time is beyond the time recorded in the
attribute, the session is deemed “expired” (accordingly, note
that the model object within the plug-in 711 should write the
expiration time for a session into the appropriate column of
the session’s corresponding session database table row each
time a new request is received for the session).

Remove_All_Expired. The “Remove_All_Expired” com-
mand is used to delete all rows from a session domain’s
database table whose corresponding sessions are deemed
expired. Here, consistent with the discussion provided just
above with respect to the Interator_All_Expired command,
session rows can be identified as being expired if they are
designed to contain an attribute that identifies them as being
expired; or, if the row attributes contains information suf-
ficient for the interface 710 to determine which sessions are
expired.

Whereas the above commands provide session domain-
wide management functions for a persisted session domain,
in a further embodiment, the interface 710 and the relevant
model object within its plug-in 711 are also written to
support the following command set for managing the infor-
mation that is persisted for a particular session (i.e., for
managing a particular row’s information). Each of the
commands below can be assumed to be identified to the
interface 710, in some way, as pertaining to a particular
session within the session domain.

Get_Session_ID. Execution of the Get_Session_ID com-
mand causes the model object within the plug-in 711 to read
the sessionlD for the particular session that the command is
called on behalf of.

Get_Expiration_Time. Execution of the Get_Expiration_
Time command causes the model object within the plug-in

10

15

20

25

30

35

40

45

50

55

60

65

18

711 to read the expiration time for the particular session that
the command is called on behalf of

3. Update_Expiration_Time (maximum inactive time
interval). Execution of the Get_Expiration_Time command
causes the plug-in 711 to write a new expiration time for the
particular session that the command is called on behalf of.
According to one implementation, as observed above, the
maximum inactive time interval is presented as an input
argument for the Update_Expiration_Time command. Here,
the expiration time is calculated by the interface 710 (or the
model object within its plug-in 711) simply by adding the
maximum inactive time interval to the present time.

In an embodiment, even though the maximum inactive
time interval is more properly viewed as session manage-
ment criteria information, the inactive time interval is
“tagged along with” the expiration time or is recognized as
its own separate attribute within the client’s session state
information. Typically, a new expiration time is calculated
with each newly arriving request for a particular session (or,
with each completed request/response cycle for a particular
session).

Get_Attribute(s) (attribute(s)). Execution of the Get_At-
tribute(s) command causes the model object within the
plug-in 711 to read one or more specific attributes identified
by the caller of the command (e.g., the session management
layer or an application). The “attribute(s)” argument iden-
tifies the specific attribute(s) (i.e., specific table column(s))
that are to be retrieved. Typically, the attributes that are
recorded should be largely if not completely independent of
the type of persistent storage employed. Hence, the same set
of attributes discussed above with respect to the Get_At-
tribute(s) command for file systems can be used for database
persistence. For substantially the same reasons described
above with respect to file system’s, the ability to specifically
target only certain portions of a persisted session object
results in more efficient operation as compared to an envi-
ronment where only the entire content of a session object’s
contents can be read from or written to persistence.

Note that, according to an implementation, all attributes
are individually accessible—not just those used for the
storage of graphics files. Here, communicative flows 734,
through 734 are meant to convey the individual accessibil-
ity of each of the persisted attributes across the database
table’s row structure. In an implementation alternative to
that described above, only a singleton “attribute” is pre-
sented as an input argument and separate Get Attribute
(attribute) commands have to be called to retrieve more than
one attribute.

Put_Attribute(s)(attribute(s)). Execution of the Put_At-
tribute(s) command enables the writing of individual attri-
butes into persistent storage consistent with the same prin-
ciples outlined above for the Get_Attribute(s) command.
Notably, in an implementation, execution of a Get_Attri-
bute(s) or Put_Attribute(s) command does not involve seri-
alization of the attribute data.

Get_Attribute(s)_Serialized(attributes(s)). Execution of
the Get_Attribute(s)_Serialized command is essentially the
same as the Get_Atribute(s) command described above,
except that the persistence storage interface 710 (or the
model object within the plug-in 711) performs deserializa-
tion on attribute data read from persistent storage.

Put_Attribute(s)_Serialized(attributes(s)). Execution of
the Put_Attribute(s)_Serialized command is essentially the
same as the Put_Atribute(s) command described above,
except that the persistence storage interface 710 (or the
model object within the plug-in 711) performs serialization
on attribute data written to persistent storage.

US 9,432,240 B2

19

According to one implementation, session management
criteria information for a particular session domain (e.g.,
maximum inactive time interval, maximum number of out-
standing requests, access policy, etc.) is kept in the in-
memory session domain 704 separately from the session
domain’s session objects 708, through 708 (e.g., in another
object not shown in FIG. 7); and, is persisted to another table
(also not shown in FIG. 7) in the session domain’s persistent
storage 723. Here, keeping the session management criteria
separate from the session state attributes in table 723 should
result in efficiencies and isolation from clocking issues
similar to those described above with respect to the Upda-
te_Expiration_Time command for file system persistent
storage.

3.0 Shared Closures

FIG. 8 shows a prior art computing system 800 having N
virtual machines 113, 213, . . . N13. The prior art computing
system 800 can be viewed as an application server that runs
and/or provides web applications and/or business logic
applications for an enterprise (e.g., a corporation, partner-
ship or government agency) to assist the enterprise in
performing specific operations in an automated fashion (e.g.,
automated billing, automated sales, etc.).

The prior art computing system 800 runs are extensive
amount of concurrent application threads per virtual
machine. Specifically, there are X concurrent application
threads (112, through 112,) running on virtual machine 113;
there are Y concurrent application threads (212, through
212,) running on virtual machine 213; . . . and, there are Z
concurrent application threads (N12, through N12,) running
on virtual machine N13; where, each of X, Y and Z are a
large number.

A virtual machine, as is well understood in the art, is an
abstract machine that converts (or “interprets”) abstract code
into code that is understandable to a particular type of a
hardware platform. For example, if the processing core of
computing system 800 included PowerPC microprocessors,
each of virtual machines 113, 213 through N13 would
respectively convert the abstract code of threads 112,
through 112, 212, through 212, and N12, through N12,
into instructions sequences that a PowerPC microprocessor
can execute.

Because virtual machines operate at the instruction level
they tend to have processor-like characteristics, and, there-
fore, can be viewed as having their own associated memory.
The memory used by a functioning virtual machine is
typically modeled as being local (or “private”) to the virtual

machine. Hence, FIG. 1 shows local memory 115, 215, N15
allocated for each of virtual machines 113, 213, . . . N13
respectively.

A portion of a virtual machine’s local memory may be
implemented as the virtual machine’s cache. As such, FIG.
1 shows respective regions 116, 216, . . . N16 of each virtual
machine’s local memory space 115, 215, . . . N15 being
allocated as local cache for the corresponding virtual
machine 113, 213, . . . N13. A cache is a region where
frequently used items are kept in order to enhance opera-
tional efficiency. Traditionally, the access time associated
with fetching/writing an item to/from a cache is less than the
access time associated with other place(s) where the item
can be kept (such as a disk file or external database (not
shown in FIG. 8)).

For example, in an object-oriented environment, an object
that is subjected to frequent use by a virtual machine (for
whatever reason) may be stored in the virtual machine’s

10

15

20

25

30

35

40

45

50

55

60

65

20

cache. The combination of the cache’s low latency and the
frequent use of the particular object by the virtual machine
corresponds to a disproportionate share of the virtual
machine’s fetches being that of the lower latency cache;
which, in turn, effectively improves the overall productivity
of the virtual machine.

A problem with the prior art implementation of FIG. 8, is
that, a virtual machine can be under the load of a large
number of concurrent application threads; and, furthermore,
the “crash” of a virtual machine is not an uncommon event.
If a virtual machine crashes, generally, all of the concurrent
application threads that the virtual machine is actively
processing will crash. Thus, if any one of virtual machines
113, 213, N13 were to crash, X, Y or Z application threads
would crash along with the crashed virtual machine. With X,
Y and Z each being a large number, a large number of
applications would crash as a result of the virtual machine
crash.

Given that the application threads running on an applica-
tion server 100 typically have “mission critical” importance,
the wholesale crash of scores of such threads is a significant
problem for the enterprise.

FIG. 9 shows a computing system 200 that is configured
with less application threads per virtual machine than the
prior art system of FIG. 8. Less application threads per
virtual machine results in less application thread crashes per
virtual machine crash; which, in turn, should result in the
new system 200 of FIG. 9 exhibiting better reliability than
the prior art system 800 of FIG. 8.

According to the depiction of FIG. 9, which is an extreme
representation of the improved approach, only one applica-
tion thread exists per virtual machine (specifically, thread
122 is being executed by virtual machine 123; thread 222 is
being executed by virtual machine 223; . . . and, thread M22
is being executed by virtual machine M23). In practice, the
computing system 200 of FIG. 9 may permit a limited
number of threads to be concurrently processed by a single
virtual machine rather than only one.

In order to concurrently execute a comparable number of
application threads as the prior art system 800 of FIG. 8, the
improved system 900 of FIG. 9 instantiates more virtual
machines than the prior art system 800 of FIG. 8. That is,
M>N.

Thus, for example, if the prior art system 800 of FIG. 8
has 10 application threads per virtual machine and 4 virtual
machines (e.g., one virtual machine per CPU in a computing
system having four CPUs) for a total of 4x10=40 concur-
rently executed application threads for the system 800 as a
whole, the improved system 900 of FIG. 9 may only permit
a maximum of 5 concurrent application threads per virtual
machine and 6 virtual machines (e.g., 1.5 virtual machines
per CPU in a four CPU system) to implement a comparable
number (5x6 =30) of concurrently executed threads as the
prior art system 100 in FIG. 9.

Here, the prior art system 800 instantiates one virtual
machine per CPU while the improved system 900 of FIG. 9
can instantiate multiple virtual machines per CPU. For
example, in order to achieve 1.5 virtual machines per CPU,
a first CPU will be configured to run a single virtual machine
while a second CPU in the same system will be configured
to run a pair of virtual machines. By repeating this pattern
for every pair of CPUs, such CPU pairs will instantiate 3
virtual machines per CPU pair (which corresponds to 1.5
virtual machines per CPU).

Recall from the discussion of FIG. 8 that a virtual
machine can be associated with its own local memory.
Because the improved computing system of FIG. 9 instan-

US 9,432,240 B2

21

tiates more virtual machines than the prior art computing
system of FIG. 8, in order to conserve memory resources,
the virtual machines 123, 223, . . . M23 of the system 900
of FIG. 9 are configured with less local memory space 125,
225, . . . M25 than the local memory 115, 215, . . . N15 of
virtual machines 113, 213, . . . N13 of FIG. 8. Moreover, the
virtual machines 123, 223, . . . M23 of the system 900 of
FIG. 9 are configured to use a shared memory 230. Shared
memory 230 is memory space that contains items that can be
accessed by more than one virtual machine (and, typically,
any virtual machine configured to execute “like” application
threads that is coupled to the shared memory 230).

Thus, whereas the prior art computing system 800 of FIG.
8 uses fewer virtual machines with larger local memory
resources containing objects that are “private” to the virtual
machine; the computing system 900 of FIG. 9, by contrast,
uses more virtual machines with less local memory
resources. The less local memory resources allocated per
virtual machine is compensated for by allowing each virtual
machine to access additional memory resources. However,
owing to limits in the amount of available memory space,
this additional memory space 230 is made “shareable”
amongst the virtual machines 123, 223, . . . M23.

According to an object oriented approach where each of
virtual machines 123, 223, . . . N23 does not have visibility
into the local memories of the other virtual machines,
specific rules are applied that mandate whether or not
information is permitted to be stored in shared memory 230.
Specifically, to first order, according to an embodiment, an
object residing in shared memory 230 should not contain a
reference to an object located in a virtual machine’s local
memory because an object with a reference to an unreach-
able object is generally deemed “non useable”.

That is, if an object in shared memory 230 were to have
a reference into the local memory of a particular virtual
machine, the object is essentially non useable to all other
virtual machines; and, if shared memory 230 were to contain
an object that was useable to only a single virtual machine,
the purpose of the shared memory 230 would essentially be
defeated.

In order to uphold the above rule, and in light of the fact
that objects frequently contain references to other objects
(e.g., to effect a large process by stringing together the
processes of individual objects; and/or, to effect relational
data structures), “shareable closures” are employed. A “clo-
sure” is a group of one or more objects where every
reference stemming from an object in the group that refer-
ences another object does not reference an object outside the
group. That is, all the object-to-object references of the
group can be viewed as closing upon and/or staying within
the confines of the group itself. Note that a single object
without any references stemming from it can be viewed as
meeting the definition of a closure.

If a closure with a non shareable object were to be stored
in shared memory 230, the closure itself would not be
shareable with other virtual machines, which, again, defeats
the purpose of the shared memory 230. Thus, in an imple-
mentation, in order to keep only shareable objects in shared
memory 230 and to prevent a reference from an object in
shared memory 230 to an object in a local memory, only
“shareable” (or “shared”) closures are stored in shared
memory 230. A “shared closure” is a closure in which each
of the closure’s objects are “shareable”.

A shareable object is an object that can be used by other
virtual machines that store and retrieve objects from the
shared memory 230. As discussed above, in an embodiment,
one aspect of a shareable object is that it does not possess a

40

45

55

22

reference to another object that is located in a virtual
machine’s local memory. Other conditions that an object
must meet in order to be deemed shareable may also be
effected. For example, according to a particular Java
embodiment, a shareable object must also posses the fol-
lowing characteristics: 1) it is an instance of a class that is
serializable; 2) it is an instance of a class that does not
execute any custom serializing or deserializing code; 3) it is
an instance of a class whose base classes are all serializable;
4) it is an instance of a class whose member fields are all
serializable; 5) it is an instance of a class that does not
interfere with proper operation of a garbage collection
algorithm; 6) it has no transient fields; and, 7) its finalize ()
method is not overwritten.

Exceptions to the above criteria are possible if a copy
operation used to copy a closure into shared memory 230 (or
from shared memory 230 into a local memory) can be shown
to be semantically equivalent to serialization and deserial-
ization of the objects in the closure. Examples include
instances of the Java 2 Platform, Standard Edition 1.3
java.lang.String class and java.util.Hashtable class.

A container is used to confine/define the operating envi-
ronment for the application thread(s) that are executed
within the container. In the context of J2EE, containers also
provide a family of services that applications executed
within the container may use (e.g., (e.g., Java Naming and
Directory Interface (JNDI), Java Database Connectivity
(JDBC), Java Messaging Service (JMS) among others).

Different types of containers may exist. For example, a
first type of container may contain instances of pages and
servlets for executing a web based “presentation” for one or
more applications. A second type of container may contain
granules of functionality (generically referred to as “com-
ponents” and, in the context of Java, referred to as “beans”)
that reference one another in sequence so that, when
executed according to the sequence, a more comprehensive
overall “business logic” application is realized (e.g., string-
ing revenue calculation, expense calculation and tax calcu-
lation components together to implement a profit calculation
application).

It should be understood that the number of threads that a
virtual machine in the improved system of FIG. 9 can
concurrently entertain should be limited (e.g., to some fixed
number) to reduce the exposure to a virtual machine crash.
For example, according to one implementation, the default
number of concurrently executed threads is 5. In a further
implementation, the number of concurrently executed
threads is a configurable parameter so that, conceivably, for
example, in a first system deployment there are 10 concur-
rent threads per virtual machine, in a second system deploy-
ment there are 5 concurrent threads per virtual machine, in
a third system deployment there is 1 concurrent thread per
virtual machine. It is expected that a number of practical
system deployments would choose less than 10 concurrent
threads per virtual machine.

3.1 Shared Memory “Persistence” with Shared
Closures

With respect to the improved computing system 900 of
FIG. 9, note that the shared memory 230 can be used as a
persistence layer for computing system 900 that provides for
failover protection against a virtual machine crash. That is,
if session domain information for a particular session is
“persisted” into shared memory 230 as a shared closure and
a virtual machine within system 900 that has been assigned
to handle the session crashes, another virtual machine within

US 9,432,240 B2

23

system 900 can “pick-up” the session because of its access
to the session information in shared memory 230. Aspects of
session handling and failover protection in shared closure/
shared memory environments have already been described
in U.S. patent application Ser. No. 11/024,924, filed, Dec.
28, 2004, entitled, “Failover Protection From A Failed
Worker Node In A Shared Memory System,” by Christian
Fleischer; Galin Galchev; Frank Kilian; Oliver Luik; and
Georgi Stanev; U.S. patent application Ser. No. 11/025,525,
filed Dec. 28, 2004, entitled, “Connection Manager That
Supports Failover Protection,” by Christian Fleischer and
Oliver Luik; U.S. patent application Ser. No. 11/025,514,
filed Dec. 28, 2004, entitled, “API For Worker Node
Retrieval Of Session Request,” by Galin Galchev; U.S.
patent application Ser. No. 11/024,552, filed Dec. 28, 2004,
entitled, “System And Method For Serializing Java Objects
Over Shared Closures,” by Georgi Stanev; and U.S. patent
application Ser. No. 11/025,316, filed Dec. 28, 2004,
entitled, “System And Method For Managing Memory Of
Java Objects,” by Georgi Stanev. All of which are assigned
to the assignee of the present application.

Storing session information in shared memory as its
primary storage area results in an overlap between both the
“in memory” and “persistence” storage concepts. That is, if
session information is stored in shared memory 230 as its
primary storage area, the computing system 900 should
enjoy both the speed of “in memory” storage and internal
failover protection offered by internal “persistent” storage.
As described in more detail below, in case failover protec-
tion is desired outside the computing system 900 (so that
another computing system can “pick up” a session dropped
by system 900), the session information can also be persisted
to an external persistent storage resource (e.g., database,
RAID system, tape drive, etc.).

FIG. 10 shows an approach in which the “in-memory”
session domain hierarchy scheme described with respect to
FIG. 4 is essentially implemented within a shared closure
based shared memory 1030. Here, the features of the shared
memory context 1002, root 1003 and session domains 1004,
through 1004, may be the same as those described with
respect to the context 402, root 403 and session domains
404, through 404, described with respect to FIG. 4. It is
worth noting that the hierarchical session domain approach
described with respect to FIG. 4 may not only be imple-
mented within the shared memory of a computing system
that embraces shared closure/shared memory technology (as
described with respect to FIG. 9), but also may be imple-
mented within the local memory of a virtual machine in a
prior art computing system that does not embrace shared
closure/shared memory technology (as described with
respect to FIG. 8).

FIG. 10 shows each of items 1007, through 1007 as
containing session state information. Because each of the
session domains 1003 and 1004, through 1004, observed in
FIG. 10 are accessible to multiple virtual machines (making
their contents shareable to the virtual machines), FIG. 10
likewise refers to these session domains as “shared” session
domains.

According to one approach, a persistent storage interface
is not needed for access to the contents of a shared session
domain in shared memory 1030 because the contents essen-
tially reside “in-memory” (i.e., are accessible with a proper
memory address). Similar to the Get_Attribute(s) command
available for file system and database persistent storages,
individual attributes of a particular session are individually
accessible from shared closure shared memory as well (e.g.,
transfer 1025 shows a single attribute of user data 1007,

20

30

35

40

45

55

24

being read into local memory). According to one embodi-
ment, a hash-mapping function is used to directly access a
specific attribute from a specific session’s session state
information. Here, the hash-mapping function employs a
namespace in which the name of the session and the name
of the desired attribute are used to uniquely identify the
particular attribute in shared memory.

The ability to fetch attributes individually from shared
memory 1030 should result in efficiency gains like those
described above with respect to the Get_Attribute(s) com-
mand for file systems and databases. For example, if the
session management layer (or an application) needs just the
expiration time, only the expiration time is read from shared
memory 1030 into local memory 1015. Undesired large
graphics files (for instance) within the session state infor-
mation are not transferred (i.e., remain in shared memory
1030) which corresponds to conservation of computing
system resources.

Note that a virtual machine typically “runs” off of local
memory. A running session management or application
routine therefore runs off of local memory as well (through
a virtual machine). When a certain object existing in shared
memory as its own shared closure (i.e., the object does not
contain a reference to another object in shared memory nor
is referenced by another object in shared memory) is needed
by a running process, it is called into the local memory of the
virtual machine running that process. Here, activity 1028 is
meant to depict the use of a session state attribute read into
local memory 1015 from shared memory 1030.

FIG. 11a shows a depiction of session state information
1107 as stored in shared closure shared memory for a single
session. For instance, session state information 1107 of FIG.
11 can be viewed as a deeper view of the contents of session
state information 1007, of FIG. 10. Consistent with the file
system and database persistence strategies, FIG. 11 shows
the session state information for a particular session as being
broken down into J separately accessible attributes 1110,
through 1110 . In an implementation, in order to make the
attributes separately accessible and to be consistent with
shared closure semantics, each attribute corresponds to its
own shared closure (e.g., one object per attribute where no
attribute object contains a reference to another attribute
object). Note that a session domain 1027 may be established
in local memory 1015 for session data associated with
shared session domain 1004, (i.e., session domains may be
setup in local memory 1015 having a one-to-one correspon-
dence with shared session domains that reside in shared
memory).

Discussed at length above was the notion that more
efficient operations may be realized if session management
criteria information is persisted separately from session state
information (see the end of sections 2.1 and 2.2 above,
respectively). FIG. 10 shows a shared closure 1009 within
session domain 1004, that contains session management
criteria information for the shared session domain 1004, .
Here, transfer 1026 is meant to show that the session
management criteria (through shared closure 1009) can be
transferred separately from session state information
between shared memory 1030 and local memory 1015 so
that, for instance, implementation of session management
policies can be run from local memory 1015 without requir-
ing session state information to be transferred between local
and shared memory. Activity 1029 is meant to depict the use
of session management criteria information read into local
memory from shared memory 1030.

FIG. 115 shows a detailed embodiment of a session
management criteria shared closure 1109 (such as session

US 9,432,240 B2

25

management criteria shared closure 1009 of FIG. 10). As
observed in FIG. 115, the shared closure 1109 includes both
an expiration management table 1120 and the session
domain’s session management criteria 1124 (e.g., maximum
inactive time interval, maximum number of outstanding
requests, access policy, etc.). Because of unique functional
opportunities that exist as an artifact of having a shared
memory approach, as described in more detail further below,
the expiration management table 1120 allows any modifi-
cation to one of a session domain’s sessions (e.g., attribute
modification to an existing session, addition of a new
session, deletion of a completed session) to be used as a
trigger to identify and drop all expired sessions within that
session domain.

In one embodiment, the table 1120 is contained by a
single object. In further embodiments, the table’s object
does not refer to nor is referenced by any objects associated
with the session management criteria 1124 (or other object
outside the table) and hence does not form part of a shared
closure with the session management criteria (or other
object). As such, the object containing table 1120 can be read
in and out of shared memory as its own shared closure. In
another embodiment, the table 1120 is implemented as a
collection of objects in the form of a shared closure.

As seen in FIG. 115, the session management table may
be configured to include the expiration time 1122 for each
session in the session management table’s corresponding
session domain (where each session is identified by its
session]D 1121). Here, a table can be viewed as a data
structure having an ordered design in which an item of a
certain type of data belongs in a certain region within the
data structure. FIGS. 12, 13, 14, and 15a,b,¢ demonstrate
different operational flows employing a session management
table (such as table 1120 of FIG. 116) that may be used to
perform session management tasks for the sessions associ-
ated with a session domain. Each of these flows are dis-
cussed in secession immediately below.

FIG. 12 shows an operational flow for the processing of
a request for an already established, existing session.
According to the flow diagram of FIG. 12, when a process
being run by a virtual machine processes a request for a
session, the session management table from that session’s
session domain is first copied 1201 into the local memory of
the virtual machine. Note that, referring back to the session
management table embodiment 1120 of FIG. 1154, the table
may also include a column 1123 that identifies, for each
session in the session domain, whether or not the session is
“available”. According to one implementation, certain types
of sessions are “distributed” which means that more than
one virtual machine is able to process a request. If different
requests from a same session are distributed to different
virtual machines it is possible at least in some circumstances
that a first virtual machine may be actively processing a first
request while a second virtual machine attempts to process
a second request from the same session.

The available column 1123 is used to specify whether or
not a session is already being “dealt with” elsewhere (e.g.,
by another virtual machine). Thus, according to FIG. 12,
after the table is copied into local memory 1201, the
available column for the session that the virtual machine
running off of the local memory (“the local virtual
machine”) is attempting to process a request for is checked
to see if the session is available 1202. If a session is currently
being handled by another virtual machine (i.e., the session is
unavailable), the local virtual machine will find some kind
of affirmative indication in the availability column and will
delay its attempt to process the request at a later time (in

10

15

20

25

30

35

40

45

50

55

60

65

26

which case an updated session management table having an
updated expiration time will be copied into local memory).

If the session is not currently being handled by another
virtual machine (i.e., the session is available), the local
virtual machine will find some affirmative indication in the
availability column, and then update shared memory to
include a session management table showing that the session
is now unavailable (i.e., the local virtual machine causes the
available column for the session in shared memory to be
marked as being unavailable). The virtual machine will then
process the session’s request which may involve the modi-
fication 1203 of various attributes associated with the ses-
sion (such as the addition, deletion or modification of large
graphics files, updating the state of the client’s web browser,
etc.).

Here, as described with respect to FIG. 10, any specific
already existing attributes that need to be used or modified
may be directly copied into local memory from shared
memory 1025 without copying over any unwanted/un-
needed attributes. Upon completion of the processing of the
session’s request one or more of the attributes that were
copied into local memory may have been modified (or a new
attribute may have been created). If so, the new attribute
information is written into the session’s session state shared
closure; and, the session management table that resides in
local memory is modified to reflect the new expiration time
for the session (by adding the maximum inactive time
interval to the present time) and that the session is now
“available”, and then, is written into the shared memory
1204.

FIGS. 13 and 14 show processes for adding and deleting
sessions, respectively. For both processes, again, the session
management table in shared memory is copied into the local
memory of the virtual machine that intends to add or delete
a session to/from the session domain. Note that copying the
session management table leaves a version in shared
memory so that other sessions in the session domain can be
concurrently processed. This property is also true with
respect to the request processing described above in FIG. 12
(i.e., an available session other than the session being
referred to in FIG. 12 can be concurrently processed because
the session management table in shared memory properly is
accurate with respect to that other session).

In the case of the addition of a new session, the local
virtual machine adds a new session entry to the local copy
of the session management table 1302. In the case of the
deletion of a session (e.g., because the session has been
completed), the local virtual machine deletes an existing
session entry from the local copy of the session management
table 1402. In the case of the addition of a new session, any
attributes that are to be written for the new session are
written into the new session’s session state shared closure in
shared memory; and, the updated session management table
in local memory is written into shared memory 1303. In the
case of the deletion of an existing session, the session state
shared closure for the session is deleted from shared
memory; and, the updated session management table in local
memory is written into shared memory 1403.

FIG. 15 demonstrates a process that identifies and
removes all sessions in a session domain that have expired.
Notably, the process of FIG. 15 may be combined with any
of the processes described just above with respect to FIGS.
12, 13 and 14. According to the process of FIG. 15, the
session management table is copied into local memory 1501.
Here, the copy operation 1501 of FIG. 15 may be the same
copy operation 1201, 1301, 1401 of FIGS. 12, 13 and 14,
respectively. Once the table has been copied into local

US 9,432,240 B2

27

memory, the table is iterated through to see if any of the
sessions within the session domain have expired (by com-
paring their expiration time against the present time) 1502.

Those sessions that are deemed expired are then deleted
from the session management table 1503. Then, the updated
session management table is written into shared memory
1504. Here, the writing 1504 of the updated session man-
agement table into shared memory of FIG. 15 may be the
same write operation 1204, 1303, 1403 of FIGS. 12, 13, and
14 respectively. Likewise, processes 1502, 1503 may be
performed concurrently and/or in series, alone or in combi-
nation with any of processes 1202, 1203, 1302 and 1402 of
FIGS. 12, 13 and 14 respectively.

FIGS. 16 through 18 relate to the deployment of appli-
cations that are easily configured for a particular type of
computing system, and, a particular persistent storage strat-
egy defined by those who are deploying the applications.
Importantly, low level details such as whether the targeted
computing system is a “shared memory/shared closure”
system (such as described above with respect to FIG. 9), or,
is a not a “shared memory/shared closure” system (such as
described above with respect to FI1G. 8) are transparent to the
deployer. A “scope” of persistence is merely defined at
deployment time, and, the deployment process automati-
cally configures the targeted computing system in light of
the targeted computing system’s capabilities.

FIG. 16 shows a deployment descriptor 1600 for defining
the persistence strategy for one or more session domains. As
is know in the art, a deployment descriptor is (often a text
file or document) used to define particular variables that
typically, are left as being “configurable” for the end-user
who is deploying the software; and/or, depend on or are
specific to the underlying platform (hardware and/or soft-
ware) that the software is being deployed onto/into. Here,
depending on implementation, a single deployment descrip-
tor 1600 may define the persistence strategy for an entire
computing system, groups of applications, a single applica-
tion, groups of session domains or a single session domain.

The basic deployment descriptor embodiment 1600 of
FIG. 16 includes a disable parameter 1601, frequency of
persistence parameters 1602, 1603 and scope of persistence
parameters 1604, 1605. The DISABLE parameter 1601
defines whether or not persistence is to be used. If the
DISABLE parameter 1601 is affirmatively marked, in the
case of computing systems that do not use failover protec-
tion through a shared memory feature (such as the prior art
computing system 800 of FIG. 8), whatever session
domain(s) that the deployment descriptor 1600 defines the
strategy for will not instantiate a persistence storage inter-
face (such as those described with respect to FIGS. 5, 6 and
7). In the case of computing systems that implement failover
protection through a shared memory feature, the code that
actually performs the failover protection is not activated, in
some fashion, for the session domain(s) that the deployment
descriptor 1600 defines the persistence storage strategy for.

The frequency parameters 1602, 1603 define the fre-
quency at which session state information is persisted. If the
ON_REQUEST parameter 1602 is affirmatively marked,
session state information is persisted each time a request is
processed (e.g., generally, the process of generating a
response for the request) for a session whose session domain
persistence strategy is defined by the deployment descriptor.
If the ON_ATTRIBUTE parameter 1603 is affirmatively
marked, session state information is persisted only if a
session state attribute is changed as a consequence of
processing a request. In an implementation, the expiration

10

15

20

25

30

35

40

45

50

55

60

65

28
time is always persisted upon the generation of a new
request irrespective of the ON_REQUEST or ON_ATTRIB-
UTE setting.

The scope parameters 1604, 1605 define what “level” or
“depth” of persistence is to be implemented for the session
domain(s) whose persistence strategy is defined by the
deployment descriptor 1600. The term “instance”, according
to FIGS. 16, 17 and 18, refers to a single computing system.
If the INSTANCE_WIDE parameter 1604 is affirmatively
marked, the persistent storage for the session(s) that the
deployment descriptor corresponds to is implemented within
the computing system that software being deployed is
deployed onto. Referring back to FIGS. 8 and 9, recall that
virtual machines occasionally crash, and that, multiple vir-
tual machines are instantiated within a single computing
system. Here, instance wide persistence can be used for a
computing system’s own “internal” session failover protec-
tion. For example, a session that is handled by a first virtual
machine—which crashes during the session—may be saved
by second virtual machine that takes over the handling of the
session, where, both virtual machines are instantiated within
the same computing system.

The term “cluster” refers to a group of computing sys-
tems. FIG. 17 depicts a simple cluster of P computing
systems 1702, through 1702, that are coupled together
through a dispatcher 1701 at the cluster’s “front-end” and a
database 1703 at the cluster’s “back-end”. Typically, par-
ticularly in high performance data processing centers, many
if not all of the computing systems 1702, through 1702,
contain one or more of the same software applications.

Requests from clients are received by the dispatcher 1701,
and the dispatcher 1701 determines, for each received
request, which computing system is most fit to handle the
request. In many cases, in the case of already existing
sessions, the dispatcher will send the request to the com-
puting system that processed the immediately previous
request. In the case of requests that correspond to the first
request of a new session, the dispatcher 1701 will determine
which computing system (amongst those having the soft-
ware capable of processing the client’s request) should
receive the request (e.g., based on a load balancing algo-
rithm).

Because the computing systems are each coupled to a
database 1703, it is possible to have inter-system session
failover. That is, if a session is being handled by a first
computing system (e.g., computing system 1702,) that per-
sists the session’s session domain information into the
database 1703, and if that computing system suffers a
complete failure, another computing system (e.g., comput-
ing system 1702,) will be able to read the persisted session
domain information from the database 1703 and carry the
session forward to completion. Thus, referring back to FIG.
16, if the CLUSTER_WIDE parameter 1605 is affirmatively
marked, the persistent storage for the session(s) that the
deployment descriptor corresponds to is to the computing
system that the deployed software is being deployed on. The
external persistent storage is presumably accessible to other
computing systems (not necessarily all computing systems)
within the cluster.

Importantly, certain application software may be deploy-
able on both: 1) a computing system that does not embrace
a shared me